To investigate the effect of molecular architecture on the grain growth kinetics of star block copolymers, a series of AnBn miktoarm star block copolymers with different numbers of arms (n = 1, 2, 4 and 16) was studied. Across this entire series of materials, all the A arms are polystyrene (PS) blocks from the same anionically synthesized batch, and thus all the A arms are identical. Likewise, all the B arms are polyisoprene (PI) blocks from the same anionically synthesized batch, and thus all the B arms are identical. All the stars employed in this study are therefore composed of the same A and B arms liked together in symmetric numbers. The coarsening kinetics of grain growth was monitored in real space by transmission electron microscopy (TEM), followed by subsequent micrograph image analysis. It was found that the molecular architecture influenced the grain growth kinetics of these AnBn star copolymers dramatically. The grain coarsening kinetics was found to follow a scaling law as V approximately t(beta), where V is the characteristic grain volume and t is time. The exponent, beta, was found to be about 0.2 for the diblock copolymer (n = 1) and 0.4 for all three of the star block copolymers (n = 2, 4 and 16) in the series. It is postulated that the difference in grain growth rate between the diblock and the various stars is due to a reduction in molecular entanglements resulting from chain stretching near the junction points in the stars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b403881a | DOI Listing |
BMC Genomics
January 2025
College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China.
Background: Megalobrama amblycephala presents unsynchronized growth, which affects its productivity and profitability. The liver is essential for substance exchange and energy metabolism, significantly influencing the growth of fish.
Results: To investigate the differential metabolites and genes governing growth, and understand the mechanism underlying their unsynchronized growth, we conducted comprehensive transcriptomic and metabolomic analyses of liver from fast-growing (FG) and slow-growing (SG) M.
Sci Rep
January 2025
ICAR-Indian Institute of Agricultural Biotechnology, Namkum, Ranchi, 834010, India.
The present study investigates the supplemental effects of chia seed oil (CSO) on the growth performance and modulation of intestinal microbiota in Labeo rohita fingerlings. Four diets were formulated with graded levels of CSO: 1.0%, 2.
View Article and Find Full Text PDFSci Rep
January 2025
Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.
The accumulation and discharge amount of coal gangue are substantial, occupying significant land resources over time. Utilizing coal gangue as subgrade filler can generate notable economic and social benefits. Coal gangue coarse-grained soil (CGSF) was used to conduct a series of large-scale vibration compaction tests and large-scale triaxial tests.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.
View Article and Find Full Text PDFFood Chem X
January 2025
Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
Instability in initial abiotic factors of open solid-state fermentation systems can significantly alter 's flavor profile, but the mechanisms governing microbial interactions and flavor formation remain unclear. This study comprehensively monitored changes in abiotic factors, microbial communities, and flavor profiles across two distinct fermentation processes in a distillery, which differed significantly in their management of initial abiotic factors. Our results revealed significant differences in abiotic factors between the two groups, including moisture, ethanol, acidity, glucose, and organic acid levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!