Reconstitution of uridine-deletion precleaved RNA editing with two recombinant enzymes.

Proc Natl Acad Sci U S A

Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.

Published: January 2005

Uridine insertion/deletion RNA editing in trypanosomatid mitochondria is a posttranscriptional RNA modification phenomenon required for translation of mitochondrial mRNAs. This process involves guide RNA-mediated cleavage at a specific site, insertion or deletion of Us from the 3' end of the 5' mRNA fragment, and ligation of the two mRNA fragments. The Leishmania major RNA ligase-containing complex protein 2 expressed in insect cells has a 3'-5' exoribonuclease activity and was therefore renamed RNA editing exonuclease 1 (REX1). Recombinant REX1 specifically trims 3' overhanging Us and stops at a duplex region. Evidence is presented that REX1 is responsible for deletion of the 3' overhanging Us from the bridged mRNA 5' cleavage fragment and that RNA editing ligase 1 is responsible for the ligation of the two mRNA cleavage fragments in U-deletion editing. The evidence involves both in vivo down-regulation of REX1 expression in Trypanosoma brucei by RNA interference and the reconstitution of precleaved U-deletion in vitro editing with only two recombinant enzymes: recombinant REX1 and recombinant RNA editing ligase 1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC545852PMC
http://dx.doi.org/10.1073/pnas.0409275102DOI Listing

Publication Analysis

Top Keywords

rna editing
20
rna
8
editing recombinant
8
recombinant enzymes
8
ligation mrna
8
rex1 recombinant
8
recombinant rex1
8
mrna cleavage
8
editing ligase
8
editing
7

Similar Publications

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

Background: Ginkgo biloba L., an iconic living fossil, challenges traditional views of evolutionary stasis. While nuclear genomic studies have revealed population structure across China, the evolutionary patterns reflected in maternally inherited plastomes remain unclear, particularly in the Sichuan Basin - a potential glacial refugium that may have played a crucial role in Ginkgo's persistence.

View Article and Find Full Text PDF

Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.

View Article and Find Full Text PDF

Genome organization recapitulates function, yet ciliates like possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, 's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments.

View Article and Find Full Text PDF

Variant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!