Plants resistant to the fungal pathogen Leptosphaeria maculans were generated by an interspecific cross between the highly susceptible Brassica napus (canola) and the highly resistant Brassica carinata. Changes in the leaf protein profiles of these lines were investigated in order to understand the biochemical basis for the observed resistance. Two-dimensional electrophoresis followed by tandem mass spectrometry led to the identification of proteins unique to the susceptible (5 proteins) and resistant genotypes (7 proteins) as well those that were differentially expressed in the resistant genotype 48 h after challenge with the pathogen (28 proteins). Proteins identified as being unique in the resistant plant material included superoxide dismutase, nitrate reductase, and carbonic anhydrase. Photosynthetic enzymes (fructose bisphosphate aldolase, triose phosphate isomerase, sedoheptulose bisphosphatase), dehydroascorbate reductase, peroxiredoxin, malate dehydrogenase, glutamine synthetase, N-glyceraldehyde-2-phosphotransferase, and peptidyl-prolyl cis-trans isomerase were observed to be elevated in the resistant genotype upon pathogen challenge. Increased levels of the antioxidant enzyme superoxide dismutase were further validated and supported by spectrophotometric and in-gel activity assays. Other proteins identified in this study such as nitrate reductase and peptidylprolyl isomerase have not been previously described in this plant-pathogen system, and their potential involvement in an incompatible interaction is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf048922z | DOI Listing |
J Exp Bot
December 2024
Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina.
Environ Microbiol Rep
December 2024
Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France.
Leptosphaeria maculans is one of the major fungal pathogens on oilseed rape (Brassica napus), causing stem canker disease. The closely related Brassica species B. nigra, B.
View Article and Find Full Text PDFJ Pestic Sci
August 2024
Graduate School of Infection Control Sciences, Kitasato University.
Plant Dis
September 2024
Department of Agriculture and Food, Department of Agriculture and Food, 3 Baron-Hay Court, South Perth, Western Australia, Australia, 6151.
Few recent investigations examine coinfection interactions between fungal and viral plant pathogens. Here, we investigated coinfections between Leptosphaeria maculans and turnip mosaic virus (TuMV) in canola (Brassica napus). Different combinations of L.
View Article and Find Full Text PDFSci Rep
August 2024
Plant Protection Research Department, Fars Agricultural and Natural Resources and Education Center, Agricultural Research, Education, and Extension Organization (AREEO), Darab, Iran.
To investigate the effects of temperature on Brassica napus (canola) resistance to Leptosphaeria maculans (LM), the causal agent of blackleg disease, metabolic profiles of LM infected resistant (R) and susceptible (S) canola cultivars at 21 °C and 28 °C were analyzed. Metabolites were detected in cotyledons of R and S plants at 48- and 120-h post-inoculation with LM using UPLC-QTOF/MS. The mock-inoculated plants were used as controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!