Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cross-link dG-to-dG is an important product of DNA nitrosation. Its formation has commonly been attributed to nucleophilic substitution of N2 in a guaninediazonium ion by guanine, while recent studies suggest guanine addition to a cyanoamine derivative formed after dediazoniation, deprotonation, and pyrimidine ring-opening. The chemical viability of the latter mechanism is supported here by the experimental demonstration of rG-to-aG formation via rG addition to a synthetic cyanoamine derivative. Thus, all known products of nitrosative guanine deamination are consistent with the postulate of pyrimidine ring-opening. This postulated mechanism not only explains what is already known but also suggests that other products and other cross-links also might be formed in DNA deamination. The study suggests one possible new product: the structure isomer aG(N1)-to-rG(C2) of the classical G(N2)-to-G(C2) cross-link. While the formation of aG(N2)-to-rG(C2) has been established by chemical synthesis, the structure isomer aG(N1)-to-rG(C2) has been assigned tentatively based on its MS/MS spectrum and because this assignment is reasonable from a mechanistic perspective. Density functional calculations show preferences for the amide-iminol tautomer of the classical cross-link G(N2)-to-G(C2) and the amide-amide tautomer of G(N1)-to-G(C2). Moreover, the results suggest that both cross-links are of comparable thermodynamic stability, and that there are no a priori energetic or structural reasons that would prevent the formation of the structure isomer in the model reaction or in DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja045108j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!