Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers.

Bioconjug Chem

Department of Applied Biology and Chemical Technology, Open Laboratory of Chirotechnology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong Polytechnic University, Hung Hom, Kowloon, PR China.

Published: July 2005

Spherical, well-defined core-shell nanoparticles that consist of poly(methyl methacrylate) (PMMA) cores and branched poly(ethylenimine) shells (PEI) were synthesized via a graft copolymerization of methyl methacrylate from branched PEI induced by a small amount of tert-butyl hydroperoxide. The PMMA-PEI core-shell nanoparticles were between 130 to170 nm in diameter and displayed zeta-potentials near +40 mV at pH 7 in 1 mM aqueous NaCl. Plasmid DNA (pDNA) was mixed with nanoparticles and formed complexes of approximately 120 nm in diameter and was highly monodispersed. The complexes were characterized with respect to their particle size, zeta-potential, surface morphology, and DNA integrity. The complexing ability of the nanoparticles was strongly dependent on the molecular weight of the PEI and the thickness of the PEI shells. The stability of the complexes was influenced by the loading ratio of the pDNA and the nanoparticles. The condensed pDNA in the complexes was significantly protected from enzymatic degradation by DNase I. Cytotoxity studies using MTT colorimetric assays suggested that the PMMA-PEI (25 kDa) core-shell nanoparticles were three times less toxic than the branched PEI (25 kDa). Their transfection efficiencies were also significantly higher. Thus, the PEI-based core-shell nanoparticles show considerable potential as carriers for gene delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc049895lDOI Listing

Publication Analysis

Top Keywords

core-shell nanoparticles
20
nanoparticles
8
polyethylenimine shells
8
gene delivery
8
branched pei
8
pei
5
amphiphilic core-shell
4
nanoparticles polyethylenimine
4
shells potential
4
potential gene
4

Similar Publications

Photosynthesis-Inspired NIR-Triggered Fe₃O₄@MoS₂ Core-Shell Nanozyme for Promoting MRSA-Infected Diabetic Wound Healing.

Adv Healthc Mater

January 2025

National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.

View Article and Find Full Text PDF

Great efforts have been made in the last few decades to realize electronic devices based on organic molecules. A possible approach in this field is to exploit the chirality of organic molecules for the development of spintronic devices, an applicative way to implement the chiral-induced spin selectivity (CISS) effect. In this work we exploit enantiopure tetrathiafulvalene (TTF) derivatives as chiral inducers at the nanoscale.

View Article and Find Full Text PDF

This work reports the step-wise fabrication of a core-shell plasmonic nanocomposite Pd@BTL-Cd consisting of a BTL-Cd shell and a palladium nanoparticle core. BTL-Cd is the [Cd(BTL)·CdCl] complex where the heptadentate framework of the bis-compartmental ligand encapsulated two Cd(II) centres in separate pockets. Pd@BTL-Cd has been found to be highly efficient for the photocatalytic conversion of furfural (a biomass-derived aldehyde) to furfuryl amine reductive amination in aqueous ammonia at room temperature.

View Article and Find Full Text PDF

African Swine Fever Virus (ASFV) is a highly contagious pathogen with nearly 100% mortality in swine, causing severe global economic loss. Current detection methods rely on nucleic acid amplification, which requires specialized equipment and skilled operators, limiting accessibility in resource-constrained settings. To address these challenges, we developed the Covalently Immobilized Magnetic Nanoparticles Enhanced CRISPR (CIMNE-CRISPR) system.

View Article and Find Full Text PDF

Ferritin nanoparticles significantly enhance the immune response to the African swine fever virus p34 protein.

Int J Pharm

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.. Electronic address:

Background: African swine fever (ASF) is a highly contagious disease, and the core-shell protein p34 is an important antigen that can induce immune responses. The use of ferritin nanoparticles for the orderly and repetitive display of antigens on the particle surface can improve the immunogenicity of subunit vaccines. Here, we used the SpyCatcher/Spytag system to conjugate ferritin nanoparticles with the p34 protein (F-p34).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!