Kinins are key pro-inflammatory peptides that exhibit mitogenic effects in tissue-specific cellular systems. Since the life span of the keratinocyte is regulated by receptors that control proliferation and differentiation, and since both processes are affected during wound healing, we have examined the consequence of kinin B2 receptors (B2R) activation in cultured human keratinocytes. Stimulation of keratinocytes by Lys-bradykinin (LBK) induced a rapid and sustained phosphorylation of 42/44 mitogen-activated protein kinase (MAPK) that translocated to the nucleus, and decreased only after 120 min of stimulation. Kinin B1 and B2 receptor (B1R and B2R) antagonists showed that phosphorylation was mainly because of B2R activation. The GF109203X inhibitor almost completely abolished the effect of LBK, suggesting the involvement of protein kinase C in the signal cascade. MAPK phosphorylation was partially dependent on epidermal growth factor receptor transactivation as assessed by the selective inhibitor, AG1478. LBK stimulation did not result in cell proliferation, but produced a rapid c-Fos expression, nuclear translocation of nuclear factor-kappaB, and a moderated (pro)filaggrin synthesis, indicating that it may modulate cell differentiation. Our results support the view that kinins may affect the life span of human keratinocytes and highlight the importance that kinin peptides may have in the pathogenesis and/or progression of skin diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0022-202X.2004.23518.xDOI Listing

Publication Analysis

Top Keywords

life span
8
b2r activation
8
human keratinocytes
8
protein kinase
8
kinin
4
kinin receptor-coupled
4
receptor-coupled signal
4
signal transduction
4
transduction human
4
human cultured
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!