The effects of pesticide contamination on the metabolism of marine molluscs are poorly documented. We investigated the response of a marine bivalve, the Pacific oyster, Crassostrea gigas, using a suppression subtractive hybridization method to identify up- and down-regulated genes after a 30-day exposure period to herbicides (a cocktail of atrazine, diuron and isoproturon, and to the single herbicide glyphosate). A total of 137 unique differentially expressed gene sequences was identified, as well as their associated physiological process. The expression of 18 of these genes was analyzed by RT-PCR under laboratory experimental conditions. The metabolic functions they are associated with include xenobiotic detoxification, energy production, immune system response and transcription. This study provides a preliminary basis for studying the response of marine bivalves to long-term herbicide exposure in terms of regulated gene expression and characterizes new potential genetic markers of herbicide contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2004.04479.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!