Quantum chemical studies of cyclizations of enediynes and enyne-allenes have proven to be computationally tractable thanks to the success of the unrestricted broken spin symmetry (UBS) approach using GGA functionals for the description of open-shell biradicals; the results can further be improved through single-point energy coupled-cluster computations [CCSD(T), BD(T)]. This made comprehensive computational studies on substituent effects and heterosubstituted systems possible. For convenience and predicting new reactions, these transformations can be grouped within larger "families". Alternative cyclization modes are predicted and await experimental realization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ar020270h | DOI Listing |
J Am Chem Soc
January 2025
Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstr 4, 37077 Göttingen, Germany.
Nitrenes (R-N) have been subject to a large body of experimental and theoretical studies. The fundamental reactivity of this important class of transient intermediates has been attributed to their electronic structures, particularly the accessibility of triplet vs singlet states. In contrast, electronic structure trends along the heavier pnictinidene analogues (R-Pn; Pn = P-Bi) are much less systematically explored.
View Article and Find Full Text PDFCoron Artery Dis
January 2025
Department of Medicine, Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles.
Background: Coronary artery dominance is determined by the coronary artery emitting the posterior descending artery. In the left dominant system, a greater proportion of coronary flow enters the left coronary artery, potentially influencing calcified plaque development in the left anterior descending artery (LAD).
Methods: This retrospective single-center cohort study analyzed patients who underwent computed tomography angiography from September 2006 to December 2022 at Harbor-UCLA in Los Angeles, California.
J Cell Sci
January 2025
Institute of Molecular Biosciences, University of Graz, Graz, Austria.
White adipose tissue (WAT) comprises a plethora of cell types beyond adipocytes forming a regulatory network that ensures systemic energy homeostasis. Intertissue communication is facilitated by metabolites and signaling molecules that are spread by vasculature and nerves. Previous works indicated that WAT responds to environmental cues by adapting the abundance of these "communication routes", however, high intra-tissue heterogeneity questions the informative value of bulk or single cell analyses and underscores the necessity of whole-mount imaging.
View Article and Find Full Text PDFCirc Cardiovasc Interv
January 2025
Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium (D.M.F.v.d.B., E.M.P., E.W., D.C., E.M., B.F., M.V., J.D., K.A.).
Background: Geographic stent-ostium mismatch is an important predictor of target lesion failure after percutaneous coronary intervention of an aorto-ostial right coronary artery lesion. Optimal visualization of the aorto-ostial plane is crucial for precise stent implantation at the level of the ostium. This study investigates whether preprocedural 3-dimensional computed tomography (3DCT), with determination of the optimal viewing angle, would allow for more precise stent implantation and reduce procedure time, contrast, and radiation dose.
View Article and Find Full Text PDFJ Org Chem
January 2025
Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China.
Thiophene and pyrrole units are extensively utilized in light-responsive materials and have significantly advanced the field of organic photovoltaics (OPV). This progress has inspired our exploration of photosensitizers (PS) for photodynamic therapy (PDT). Currently, traditional PS face limitations in clinical application, including a restricted variety and narrow applicability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!