Previous diaphragm studies found that during intermittent stimulation, intratrain end-plate potential (EPP) amplitude rundown is accelerated by increasing stimulation frequency, whereas intertrain EPP rundown is independent of frequency. We hypothesized that increasing stimulation frequency accelerates rundown recovery, and with a biphasic time course. Intracellular recordings were made in vitro from rat phrenic nerve-hemidiaphragm preparations. EPP amplitude recovery after a 100-ms stimulation train and 100 ms of quiescence was significantly greater following stimulation at 200 HZ than at 20-100 HZ, despite larger antecedent EPP decline. EPP amplitudes recovered with a biphasic pattern: an early component with a fast time-constant (0.03-0.06 s) and a late component with a slow time-constant (0.5-5 s). Increased antecedent stimulation frequency accelerated the early component, but stimulation duration or pulse number modulated the late component. When interpreted in the context of vesicle recycling and replenishment models involving multiple pools and pathways, these data suggest that antecedent stimulation frequency regulates predominantly the fast pathways. This may have important implications for the development of respiratory failure in diseases of the neuromuscular junction, such as myasthenia gravis, when the firing duration and frequency are altered in association with changes in breathing pattern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.20245 | DOI Listing |
Ann Gen Psychiatry
January 2025
Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
Background: Seizure threshold increases with age and the frequency of electroconvulsive therapy (ECT). Therefore, therapeutic seizures can be difficult to induce, even at maximum stimulus charge with available ECT devices. Such cases are known as difficult-to-induce-seizures electroconvulsive therapy cases (DECs).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China. Electronic address:
This study examined the effects of polyethylene terephthalate (PET) nanoplastics on the rhizosphere of Oryza sativa L., focusing on dynamic changes and interactions among microbial communities, antibiotic resistance genes (ARGs) and microplastic degradation genes (MDGs). PET exposure altered the structure and function of soil microbial, enabling specific microbial groups to thrive in polluted environments.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Pathology and Forensic Medicine, College of Medicine, University of AlQadisiyah, Iraq.
Extensive research on COVID-19 has revealed a notable link between the disease and thyroid disorders, highlighting complex interactions between thyroid hormones, immunomodulatory signaling molecules within the thyroid gland, and viral infections. This study evaluated the relationship between thyroid function and COVID-19 in Iraqi patients at Adiwaniyah Teaching Hospital. The cohort for this investigation comprised all patients who were admitted to the isolation center at the Teaching Hospital during the timeframe extending from January 2024 to June 2024.
View Article and Find Full Text PDFTranscranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control.
View Article and Find Full Text PDFCortex
December 2024
Institute of Research in Psychology (IPSY) & Institute of Neuroscience (IoNS), Louvain Bionics Center, University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium; School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne & Sion, Switzerland. Electronic address:
Effective social communication depends on the integration of emotional expressions coming from the face and the voice. Although there are consistent reports on how seeing and hearing emotion expressions can be automatically integrated, direct signatures of multisensory integration in the human brain remain elusive. Here we implemented a multi-input electroencephalographic (EEG) frequency tagging paradigm to investigate neural populations integrating facial and vocal fearful expressions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!