With the identification of the genes responsible for autosomal dominant early-onset familial Alzheimer's disease (FAD genes), there is a considerable interest in the application of this genetic information in medical practice through genetic testing and counseling. Pathogenic mutations in the PSEN1 and PSEN2 genes encoding presenilin-1 and -2, and the APP gene encoding amyloid b precursor protein, account for 18-50% of familial EOAD cases with autosomal dominant pattern of inheritance. A clinical algorithm of genetic testing and counseling proposed for families with AD has been presented here. A screening for mutations in the APP, PSEN1, and PSEN2 genes is available to individuals with AD symptoms and at-risk children or siblings of patients with early-onset disease determined by a known mutation. In an early-onset family, a known mutation in an affected patient puts the siblings and children at a 50% risk of inheriting the same mutation. The goal of genetic testing is to identify at-risk individuals in order to facilitate early and effective treatments in the symptomatic person based on an individual's genotype and strategies to delay the onset of disease in the presymptomatic mutation carriers. However, there are several arguments against the use of genetic testing both presymptomatically (unpredictable psychological consequences of information about a genetic defect for family members) and as a diagnostic tool for the differential diagnosis of dementia in general practice (a risk of errors in an interpretation of mutation penetrance and its secondary effects on family members, especially for novel mutations; the possibility of coexistence of another form of dementia at the presence of a mutation). Currently, APOE genotyping for presymptomatic individuals with a family history of late-onset disease is not recommended. The APOE4 allele may only confer greater risk for disease, but its presence is not conclusive for the development of AD.
Download full-text PDF |
Source |
---|
Intern Emerg Med
January 2025
Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.
Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
Gastrointestinal Defects and Immunodeficiency Syndrome-1 (GIDID-1), caused by abnormalities in TTC7A, is an autosomal recessive disorder characterized by multiple gastrointestinal malformations and immune deficiencies, often accompanied by inflammatory bowel disease (IBD). This condition typically results in poor treatment outcomes and is usually fatal in early infancy. This paper examined the genetic abnormalities and clinical features of GIDID by analyzing data from three children and one fetus with gastrointestinal dysfunction and immune deficiency associated with TTC7A abnormalities at our hospital, and reviewed reported cases worldwide.
View Article and Find Full Text PDFAnim Biotechnol
December 2025
Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China.
Copy number variations (CNV) are important genetic variations. The endogenous factors cobalamin receptor () and MIA SH3 domain ER-derived factor 3 () are associated with bone/muscle development and intramuscular fat deposition. There have been no reports on the effects of and CNVs on growth traits of Chinese cattle.
View Article and Find Full Text PDFGenet Med
January 2025
Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA -Plataforma Bionand), University of Málaga, Málaga, Spain; Lipid Unit. Internal Medicine Service. University Hospital Virgen de la Victoria, Málaga, Spain.
Purpose: Genetic testing is required to confirm a diagnosis of familial chylomicronemia syndrome (FCS). We assessed the pathogenicity of variants identified in the FCS canonical genes to diagnose FCS cases.
Methods: 245 patients with severe hypertriglyceridemia underwent next-generation sequencing.
Clin Cosmet Investig Dermatol
January 2025
Lugansk state medical University, Department of Pathology, Rivne, Ukraine.
Introduction: Marie-Unna hereditary hypotrichosis (MUHH) is an autosomal dominant disorder characterized by a specific pattern of hair loss. Initially described in 1925 by Marie-Unna in a German family spanning over seven generations, MUHH represents a previously unidentified form of congenital hypotrichosis. It typically presents as sparse hair at birth with a coarse texture, followed by regrowth during childhood then, finally, gradual hair loss at puberty, resembling pattern of androgenetic alopecia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!