How domestication bottlenecks and artificial selection shaped the amount and distribution of genetic variation in the genomes of modern crops is poorly understood. We analyzed diversity at 462 simple sequence repeats (SSRs) or microsatellites spread throughout the maize genome and compared the diversity observed at these SSRs in maize to that observed in its wild progenitor, teosinte. The results reveal a modest genome-wide deficit of diversity in maize relative to teosinte. The relative deficit of diversity is less for SSRs with dinucleotide repeat motifs than for SSRs with repeat motifs of more than two nucleotides, suggesting that the former with their higher mutation rate have partially recovered from the domestication bottleneck. We analyzed the relationship between SSR diversity and proximity to QTL for domestication traits and observed no relationship between these factors. However, we did observe a weak, although significant, spatial correlation for diversity statistics among SSRs within 2 cM of one another, suggesting that SSR diversity is weakly patterned across the genome. Twenty-four of 462 SSRs (5%) show some evidence of positive selection in maize under multiple tests. Overall, the pattern of genetic diversity at maize SSRs can be explained largely by a bottleneck effect with a smaller effect from selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1449566 | PMC |
http://dx.doi.org/10.1534/genetics.104.032086 | DOI Listing |
Nat Commun
December 2024
Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.
View Article and Find Full Text PDFIran J Microbiol
December 2024
Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
Background And Objectives: Plant growth-promoting rhizobacteria (PGPR) with a diverse set of traits can improve crop yield in agriculture. The current study aimed to evaluate the potential of multi-trait PGPR isolates as inoculants for maize growth.
Materials And Methods: In this study, 23 bacterial isolates were initially screened from maize plant rhizosphere.
J Genet Genomics
December 2024
Institute of Genetics and Developmental Biology, Key Laboratory of Seed Innovation, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
Saline-alkali soil severely reduces the productivity of crops, including maize (Zea mays). Although several genes associated with saline-alkali tolerance have been identified in maize, the underlying regulatory mechanism remains elusive. Here, we report a direct link between colonization by arbuscular mycorrhizal fungi (AMF) and saline-alkali tolerance in maize.
View Article and Find Full Text PDFMol Breed
January 2025
School of Agricultural and Biological Engineering, Foshan University/CIMMYT-China Tropical Maize Research Center, Foshan, 528225 Guangdong China.
Unlabelled: Corn is a widely grown cereal crop that serves as a model plant for genetic and evolutionary studies. However, the heterosis pattern of sweet corn remains unclear. Here, we analysed the genetic diversity and population structure of 514 sweet corn inbred lines and 181 field corn inbred lines.
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States.
is a globally significant genus of plant pathogens known for causing anthracnose across a diverse array of hosts. Notably, is a pathogen affecting maize. Annually, the global economic impact of this pathogen reaches billions of US dollars.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!