Identification of gram-negative bacilli, both enteric and nonenteric, by conventional methods is not realistic for clinical microbiology laboratories performing routine cultures in today's world. The use of commercial kits, either manual or automated, to identify these organisms is a common practice. The advent of rapid or "spot" testing has eliminated the need for some commonly isolated organisms to be identified with the systems approach. Commercially available systems provide more in-depth identification to the species level as well as detect new and unusual strains. The answers obtained from these systems may not always be correct and must be interpreted with caution. The patient demographics, laboratory workload and work flow, and technologist's skill levels should dictate the system of choice. Cost considerations introduce another variable into the equation affecting choice. Each system has its own strengths and weaknesses, and each laboratory must decide on the level of sophistication that fulfills its particular needs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC544179 | PMC |
http://dx.doi.org/10.1128/CMR.18.1.147-162.2005 | DOI Listing |
Neuroscience
January 2025
Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States. Electronic address:
Epilepsy, a neurological disorder causing recurring seizures, is often studied in zebrafish by exposing animals to pentylenetetrazol (PTZ), which induces clonic- and tonic-like behaviors. While adult zebrafish seizure-like behaviors are well characterized, manual assessment remains challenging due to its time-consuming nature, potential for human error/bias, and the risk of overlooking subtle behaviors. Aiming to circumvent these issues, we developed a machine learning model for automating the analysis of subtle abnormal and seizure-like behaviors in PTZ-exposed adult zebrafish.
View Article and Find Full Text PDFClinics (Sao Paulo)
January 2025
Horta Institute, Rio de Janeiro, Brazil.
Purpose: This study aimed to evaluate the accuracy and quality of healing of main corneal incisions in femtosecond laser procedures in cataract surgery.
Methods: It was a prospective, non-randomized, investigator-masked study. A total of 37 eyes of 37 patients with indication for cataract surgery were separated into two groups in this prospective, nonrandomized study: Femto group, with incisions automated by femtosecond laser (18 eyes), and Phaco group, with incisions made using a keratome (19 eyes).
Hematol Transfus Cell Ther
November 2024
Hospital São Rafael, Salvador, Bahia, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Bahia, Brazil; Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil. Electronic address:
Mesenchymal stromal cells are multipotent cells present in various tissues that are widely studied for relevant therapeutic potential due to their paracrine immunomodulatory and tissue regenerating properties. Many mesenchymal stromal cell-based products are under investigation for the treatment of different clinical conditions. Recently, the therapeutic potential of the extracellular vesicles released by these cells has been under focus, with emphasis on clinical translation.
View Article and Find Full Text PDFAm J Orthod Dentofacial Orthop
February 2025
Department of Orthodontics, Faculty of Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
Introduction: This study aimed to assess the precision of an open-source, clinician-trained, and user-friendly convolutional neural network-based model for automatically segmenting the mandible.
Methods: A total of 55 cone-beam computed tomography scans that met the inclusion criteria were collected and divided into test and training groups. The MONAI (Medical Open Network for Artificial Intelligence) Label active learning tool extension was used to train the automatic model.
Int J Pharm
January 2025
Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK. Electronic address:
Compounding medications in pharmacies is a common practice for patients with prescriptions that are not available commercially, but it is a laborious and error-prone task. The incorporation of emerging technologies to prepare personalised medication, such as 3D printing, has been delayed in smaller pharmacies due to concerns about potential workflow disruptions and learning curves associated with novel technologies. This study examines the use in a community pharmacy of a pharmaceutical 3D printer to auto-fill capsules and blisters using semisolid extrusion, incorporating an integrated quality control system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!