The theta rhythm is the largest extracellular synchronous signal that can be recorded from the mammalian brain and has been strongly implicated in mnemonic processes of the hippocampus. We describe (a) ascending brain stem-forebrain systems involved in controlling theta and nontheta (desynchronization) states of the hippocampal electroencephalogram; (b) theta rhythmically discharging cells in several structures of Papez's circuit and their possible functional significance, specifically with respect to head direction cells in this same circuit; and (c) the role of nucleus reuniens of the thalamus as a major interface between the medial prefrontal cortex and hippocampus and as a prominent source of afferent limbic information to the hippocampus. We suggest that the hippocampus receives two main types of input: theta rhythm from ascending brain stem- diencephaloseptal systems and information bearing mainly from thalamocortical/cortical systems. The temporal convergence of activity of these two systems results in the encoding of information in the hippocampus, primarily reaching it from the entorhinal cortex and nucleus reuniens.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1534582304273594DOI Listing

Publication Analysis

Top Keywords

theta rhythm
12
functional significance
8
ascending brain
8
nucleus reuniens
8
hippocampus
6
theta
5
rhythm hippocampus
4
hippocampus subcortical
4
subcortical control
4
control functional
4

Similar Publications

Evaluation of mechanisms of action of EEG neurofeedback (EEG-nf) using simultaneous fMRI is highly desirable to ensure its effective application for clinical rehabilitation and therapy. Counterbalancing training runs with active neurofeedback and sham (neuro)feedback for each participant is a promising approach to demonstrate specificity of training effects to the active neurofeedback. We report the first study in which EEG-nf procedure is both evaluated using simultaneous fMRI and controlled via the counterbalanced active-sham study design.

View Article and Find Full Text PDF

Distinctive Delta and Theta Responses in Deductive and Probabilistic Reasoning.

Brain Behav

January 2025

Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey.

Introduction: The neural substrates of reasoning, a cognitive ability we use constantly in daily life, are still unclear. Reasoning can be divided into two types according to how the inference process works and the certainty of the conclusions. In deductive reasoning, certain conclusions are drawn from premises by applying the rules of logic.

View Article and Find Full Text PDF

Airborne Exposure Induces Depression-like Behaviors in Mice Abnormal Neural Oscillation and Mitochondrial Dysfunction.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Airborne exists widely in the natural environment and is closely related to human health. Growing evidence indicates that environmental air pollution elevates the risk of depressive disorders. However, the potential role of airborne in the development of depression remains unclear.

View Article and Find Full Text PDF

(1) Background: Delirium is a serious condition in patients undergoing treatment for somatic diseases, leading to poor prognosis. However, the pathophysiology of delirium is not fully understood and should be clarified for its adequate treatment. This study analyzed the relationship between confusion symptoms in delirium and resting-state electroencephalogram (EEG) power spectrum (PS) profiles to investigate the heterogeneity.

View Article and Find Full Text PDF

Scientific Histories of Hippocampal Research: Introduction to the Special Issue.

Hippocampus

January 2025

Cognitive Science Program and Department of Psychology, University of Arizona, Tucson, Arizona, USA.

Numerous scientific advances and discoveries have arisen from research on the hippocampal formation. This special issue provides first-person historical descriptions of these advances and discoveries in hippocampal research, written by those directly involved in the research. This is the first section of a special issue that will also include future articles on this topic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!