The importance of understanding the dynamics of DNA condensation is inherent in the biological significance of DNA packaging in cell nuclei, as well as for gene therapy applications. Specifically, the role of ligand hydrophobicity in DNA condensation has received little attention. Considering that only multivalent cations can induce true DNA condensation, previous studies exploring monovalent lipids have been unable to address this question. In this study we have elucidated the contribution of the hydrophobic effect to multivalent cation- and cationic lipid-DNA binding and DNA collapse by studying the thermodynamics of cobalt hexammine-, spermine-, and lipospermine-plasmid DNA binding at different temperatures. Comparable molar heat capacity changes (DeltaC(p)) associated with cobalt hexammine- and spermine-DNA binding (-23.39 cal/mol K and -17.98 cal/mol K, respectively) suggest that upon binding to DNA, there are insignificant changes in the hydration state of the methylene groups in spermine. In contrast, the acyl chain contribution to the DeltaC(p) of lipospermine-DNA binding (DeltaC(p ) = DeltaC(p lipospermine) - DeltaC(p spermine)) is significant (-220.94 cal/mol K). Although lipopermine induces DNA ordering into "tubular" suprastructures, such structures do not assume toroidal dimensions as observed for spermine-DNA complexes. We postulate that a steric barrier posed by the acyl chains in lipospermine precludes packaging of DNA into dimensions comparable to those found in nature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1305261 | PMC |
http://dx.doi.org/10.1529/biophysj.104.052100 | DOI Listing |
BMC Genomics
January 2025
Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
Background: Improving the germination performance of bread wheat is an important breeding target in many wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, including 202 landraces and 90 cultivars.
View Article and Find Full Text PDFSci Rep
January 2025
School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
The proliferation-specific oncogenic transcription factor, FOXM1 is overexpressed in primary and recurrent breast tumors across all breast cancer (BC) subtypes. Intriguingly, FOXM1 overexpression was found to be highest in Triple-negative breast cancer (TNBC), the most aggressive BC with the worst prognosis. However, FOXM1-mediated TNBC pathogenesis is not completely elucidated.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFSci Rep
January 2025
Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea.
De novo shoot regeneration, characterized by the emergence of adventitious shoots from excised or damaged tissues or organs in vitro, is regulated by the complex interplay between genetic and epigenetic regulatory mechanisms. However, the specific effect of histone deacetylation on shoot regeneration remains poorly understood. This study investigated the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on shoot regeneration in callus derived from root explants.
View Article and Find Full Text PDFSci Rep
January 2025
Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Lung cancer (LC) is a crucial rapidly developing disease. In Egypt, it is one of the five most frequent cancers. Little is known about the impact of deleted mismatch repair genes and its correlation to clinicopathological characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!