Horizontal DNA transfer is an important factor of evolution and participates in biological diversity. Unfortunately, the location and length of horizontal transfers (HTs) are known for very few species. The usage of short oligonucleotides in a sequence (the so-called genomic signature) has been shown to be species-specific even in DNA fragments as short as 1 kb. The genomic signature is therefore proposed as a tool to detect HTs. Since DNA transfers originate from species with a signature different from those of the recipient species, the analysis of local variations of signature along recipient genome may allow for detecting exogenous DNA. The strategy consists in (i) scanning the genome with a sliding window, and calculating the corresponding local signature (ii) evaluating its deviation from the signature of the whole genome and (iii) looking for similar signatures in a database of genomic signatures. A total of 22 prokaryote genomes are analyzed in this way. It has been observed that atypical regions make up approximately 6% of each genome on the average. Most of the claimed HTs as well as new ones are detected. The origin of putative DNA transfers is looked for among approximately 12 000 species. Donor species are proposed and sometimes strongly suggested, considering similarity of signatures. Among the species studied, Bacillus subtilis, Haemophilus Influenzae and Escherichia coli are investigated by many authors and give the opportunity to perform a thorough comparison of most of the bioinformatics methods used to detect HTs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC546175 | PMC |
http://dx.doi.org/10.1093/nar/gni004 | DOI Listing |
EClinicalMedicine
December 2024
Department of Pathology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Hokkaido, Japan.
Background: Pancreatic cancer is highly aggressive and has a low survival rate primarily due to late-stage diagnosis and the lack of effective early detection methods. We introduce here a novel, noninvasive urinary extracellular vesicle miRNA-based assay for the detection of pancreatic cancer from early to late stages.
Methods: From September 2019 to July 2023, Urine samples were collected from patients with pancreatic cancer (n = 153) from five distinct sites (Hokuto Hospital, Kawasaki Medical School Hospital, National Cancer Center Hospital, Kagoshima University Hospital, and Kumagaya General Hospital) and non-cancer participants (n = 309) from two separate sites (Hokuto Hospital and Omiya City Clinic).
Front Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFStructural variants (SVs) drive gene expression in the human brain and are causative of many neurological conditions. However, most existing genetic studies have been based on short-read sequencing methods, which capture fewer than half of the SVs present in any one individual. Long-read sequencing (LRS) enhances our ability to detect disease-associated and functionally relevant structural variants (SVs); however, its application in large-scale genomic studies has been limited by challenges in sample preparation and high costs.
View Article and Find Full Text PDF"Active" reservoir cells transcribing HIV can perpetuate chronic inflammation in virally suppressed people with HIV (PWH) and likely contribute to viral rebound after antiretroviral therapy (ART) interruption, so they represent an important target for new therapies. These cells, however, are difficult to study using single-cell RNA-seq (scRNA-seq) due to their low frequency and low levels of HIV transcripts, which are usually not polyadenylated. Here, we developed "HIV-seq" to enable more efficient capture of HIV transcripts - including non-polyadenylated ones - for scRNA-seq analysis of cells from PWH.
View Article and Find Full Text PDFExposure to saturated fatty acids (SFAs), such as palmitic acid, can lead to cellular metabolic dysfunction known as lipotoxicity. Although canonical adaptive metabolic processes like lipid storage or desaturation are known cellular responses to saturated fat exposure, the link between SFA metabolism and organellar biology remains an area of active inquiry. We performed a genome-wide CRISPR knockout screen in human epithelial cells to identify modulators of SFA toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!