Conserved asparagine residue 54 of alpha-sarcin plays a role in protein stability and enzyme activity.

Biol Chem

Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, E-28040 Madrid, Spain.

Published: December 2004

Asparagine 54 of alpha-sarcin is a conserved residue within the proteins of the ribotoxin family of microbial ribonucleases. It is located in loop 2 of the protein, which lacks repetitive secondary structure elements but exhibits a well-defined conformation. Five mutant variants at this residue have been produced and characterized. The spectroscopic characterization of these proteins indicates that the overall conformation is not changed upon mutation. Activity and denaturation assays show that Asn-54 largely contributes to protein stability, and its presence is a requirement for the highly specific inhibitory activity of these ribotoxins on ribosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1515/BC.2004.150DOI Listing

Publication Analysis

Top Keywords

protein stability
8
conserved asparagine
4
asparagine residue
4
residue alpha-sarcin
4
alpha-sarcin plays
4
plays role
4
role protein
4
stability enzyme
4
enzyme activity
4
activity asparagine
4

Similar Publications

Among the known nuclear exportins, CRM1 is the most studied prototype. Dysregulation of CRM1 occurs in many cancers, hence, understanding the role of CRM1 in cancer can help in developing synergistic therapeutics. The study investigates how CRM1 affects prostate cancer growth and survival.

View Article and Find Full Text PDF

Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases.

J Integr Plant Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.

Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. HO, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.

View Article and Find Full Text PDF

In silico screening and immunogenic features of putative tick cement protein PA107 from Ixodes ricinus tick.

Exp Appl Acarol

January 2025

Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Tick salivary proteins are crucial for efficient and successful tick feeding. Most of them are still uncharacterized, especially those involved in the formation of tick cement. Tick salivary protein PA107 is a putative cement protein, which is transcribed in salivary glands during the initial phase of tick feeding.

View Article and Find Full Text PDF

Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction.

ACS Appl Mater Interfaces

January 2025

Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!