Attempts were to develop microemulsion systems using medium chain triglyceride, deionized water, and TPGS as surfactant for the oral delivery of protein drugs or poorly water-soluble drugs. Phase diagrams were constructed to elucidate the phase behavior of systems composed of Captex 300 and water with D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) as main surfactant, polysorbates (Tween 20, Tween 40, Tween 60 and Tween 80) as adjuvant surfactants, and polyethylene glycols (PEG 400 and PEG 600) and polyols (ethanediol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol and glycerin) as cosurfactants. The ratios of TPGS to Tweens, PEGs or polyols (K(m)) were set at 4/1, 2/1, 1/1, 1/2, and 1/4. The phase diagram for H(2)O/Captex 300/TPGS system reveals that when TPGS was used as a sole surfactant, it is not capable of producing isotropic solutions of water and oil over a wide range of the compositions. H(2)O/Captex 300/TPGS/Tweens systems with various K(m), regardless of the adjuvant surfactant used were capable of producing an isotropic phase. The extension of microemulsion phase and the presence and extension of the gel phase were found to be dependent on the surfactant mixture. The phase diagrams of H(2)O/Captex 300/TPGS systems using polyols as cosurfactants demonstrate that the types of polyols have a slight effect on the region of existence of the microemulsions. Comparison between the isotropic regions for the polyols system reveals that as the relative concentration of polyols increase, the isotropic region decrease in size. This decrease is towards the S(mix)-water axis indicating that as the relative concentration of polyols increases the maximum amount of oil solubilized decreases. The gel region decreased in size with the increase of polyols weight ratio. All polyols do not solubilized Captex 300 without using TPGS as surfactant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2004.10.030DOI Listing

Publication Analysis

Top Keywords

tpgs surfactant
12
tween tween
12
polyols
9
microemulsion systems
8
polyethylene glycol
8
glycol 1000
8
1000 succinate
8
succinate tpgs
8
surfactant oral
8
oral delivery
8

Similar Publications

Supersaturated Gel Formulation (SGF) of Atorvastatin at a Maximum Dose of 80 mg with Enhanced Solubility, Dissolution, and Physical Stability.

Gels

December 2024

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea.

The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due to the necessity of taking high doses. ATR has highly pH-dependent solubility at 37 °C, leading to poor solubility (<10 μg/mL) in stomach acid (pH 1.

View Article and Find Full Text PDF

Drug nanocrystal engineering is an attractive pharmaceutical approach to enhancing the oral bioavailability of poorly soluble drugs. The mechanism of drug nanocrystal stabilization, however, is unclear. Here we developed andrographolide nanocrystals (AG-NCs) with various nonionic surfactants (Pluronic-F127, TPGS, or Brij-S20).

View Article and Find Full Text PDF

Impact of surfactants on solution behavior and membrane transport of amorphous solid dispersions.

J Pharm Sci

January 2025

Department of Pharmacy, Uppsala University, Biomedical Centre, SE-751 23 Uppsala, Sweden. Electronic address:

The purpose of the study was to develop an amorphous solid dispersion (ASD) of a poorly soluble compound (AK100) and investigate the impact of different surfactants on its dissolution, supersaturation and membrane transport. The solubility of the AK100 was determined in crystalline and amorphous form in the absence and presence of three surfactants at different concentrations: sodium dodecyl sulphate (SDS), polysorbate 80 (PS80) and D-α-tocopherol polyethylene glycol succinate (TPGS). The relation between solubility and surfactant solubilization was evaluated using a computational model.

View Article and Find Full Text PDF

Vehicle effect on in-vitro and in-vivo performance of spray-dried dispersions.

J Pharm Sci

January 2025

Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.

In early drug development, amorphous spray-dried dispersions (SDDs) applied to enhance the bioavailability of poorly water-soluble compounds are typically administered to preclinical species via oral gavage in the form of suspensions. The liquid formulations are usually prepared on the same day of dosing to minimize the exposure of the amorphous material to the aqueous vehicle, thereby reducing the risk of crystallization. Dose-ability (e.

View Article and Find Full Text PDF

Nearly all antitumor drugs can benefit greatly from effective tumor-targeted delivery for improved therapeutic efficacy and reduced toxic side effects. However, the vast majority of tumor-targeting ligands can only target specific tumor cells that highly express the corresponding receptors and thus are only applicable to limited tumor types. Heptamethine cyanines with medium cyclohexene and medium Cl atoms, such as IR780 and IR808, have shown an unusual ability to indiscriminately accumulate into virtually all tumor types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!