A cytokine secreted from the suboesophageal body is essential for morphogenesis of the insect head.

Mech Dev

Department of Applied Biological Science, Faculty of Agriculture, Saga University, Honjo-1, Saga 840-8502, Japan.

Published: February 2005

The suboesophageal body of insects was identified over a century ago in the silkworm embryo, but its biological function is still unknown. We discovered that this tissue is differentiated in the earliest embryonic stages of the cabbage armyworm and secretes the insect cytokine, growth-blocking peptide (GBP), transiently from 24 to 60 h after oviposition when gastrulation is in progress. Over-expression of GBP, achieved by microinjection of the GBP gene driven by a cytomegalovirus (CMV) constitutive promoter, resulted in complex deformities of the procephalon (embryonic head). Severe abnormal phenotypes of the head structure were produced by silencing the GBP expression in the embryo by treating with GBP double-stranded RNA: the procephalon-containing optic lobes diminished and completely separated into bilateral halves. This indicates that GBP secreted from the suboesophageal body plays an essential role in the formation of the procephalic domain during early embryogenesis. The cytokine-induced fusion of bilateral procephalic lobes is thought to be evolutionarily conserved at least in insects, because of the widespread occurrence of the suboesophageal body in insect embryos.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mod.2004.10.005DOI Listing

Publication Analysis

Top Keywords

suboesophageal body
16
secreted suboesophageal
8
gbp
6
cytokine secreted
4
suboesophageal
4
body
4
body essential
4
essential morphogenesis
4
morphogenesis insect
4
insect head
4

Similar Publications

Micro-computed tomography (micro-CT) is an X-ray-based technique that allows visualisation of the internal anatomy of insects in situ and does not require dissections. Traditionally, the study of insect anatomy has been mainly based on dissection techniques and microtome sections. However, micro-CT is becoming an increasingly widespread study technique.

View Article and Find Full Text PDF

Integrated Analysis of Transcriptome and Proteome to Reveal Pupal Color Switch in Butterflies.

Front Genet

February 2022

State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.

Pupal color polyphenism in butterflies, including green, intermediate, or brown, is an excellent study system for understanding phenotypic plasticity. Previous studies suggested that development of brown pupae may be controlled by a hormone called pupal-cuticle-melanizing-hormone (PCMH) which is synthesized and secreted from brain-suboesophageal ganglion and prothoracic ganglion complexes (Br-SG-TG1) during the pre-pupa stage. However, detailed molecular mechanisms of neuroendocrine regulation in pupal color development remain unknown.

View Article and Find Full Text PDF

Insect pheromone biosynthesis activating neuropeptide (PBAN) controls the synthesis and actuating of sex pheromones of female adult. In the current examination, the full-length cDNA encoding the PBAN receptor was cloned from the pheromone gland (PG) of Antheraea pernyi (AntpePBANR). The AntpePBANR displayed the characteristic seven transmembrane areas of the G protein-coupled receptor (GPCR) and was closely related to the PBANR from Bombyx mori and Manduca sexta in the phylogenetic tree.

View Article and Find Full Text PDF

Organization of olfactory centres in the malaria mosquito Anopheles gambiae.

Nat Commun

October 2016

The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA.

Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP.

View Article and Find Full Text PDF

The fruit fly Drosophila melanogaster is a poikilothermic organism that must detect and respond to both fine and coarse changes in environmental temperature in order maintain optimal body temperature, synchronize behavior to daily temperature fluctuations, and to avoid potentially injurious environmental hazards. Members of the Transient Receptor Potential (TRP) family of cation channels are well known for their activation by changes in temperature and their essential roles in sensory transduction in both invertebrates and vertebrates. The Drosophila genome encodes 13 TRP channels, and several of these have key sensory transduction and modulatory functions in allowing larval and adult flies to make fine temperature discriminations to attain optimal body temperature, detect and avoid large environmental temperature fluctuations, and make rapid escape responses to acutely noxious stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!