Constitutive activation of the ras oncoprotein plays a critical role in cancer invasion and metastasis. Particularly, ras-related protease expression such as the serine protease urokinase plasminogen activator (u-PA) has been implicated in mediating cancer cell invasion. Previous studies have shown that ras-mediated u-PA expression is regulated through the mitogen- (MAPK) and stress-activated protein kinase (SAPK) signal transduction pathways extracellular signal-regulated kinase (ERK) and c-Jun-activating kinase (JNK). We therefore asked the question, if ras-related cell invasion might additionally require the third MAPK/SAPK signal transduction cascade, p38. Indeed, we found that ras induces invasion based on the activation of certain p38 protein kinase isoforms, in particular, p38alpha. Moreover, ras activation through transient or stable expression of a Ha-rasEJ mutant induced the expression of u-PA. This was found to be a consequence of an increase of u-PA m-RNA, which was paralleled by only a modest activation of the u-PA promoter. In conclusion, we provide evidence for the requirement of a novel ras-p38alpha-u-PA pathway for ras-dependent cellular invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2004.10.004DOI Listing

Publication Analysis

Top Keywords

cell invasion
8
protein kinase
8
signal transduction
8
invasion
6
u-pa
5
p38 sapk
4
sapk pathway
4
pathway required
4
required ha-ras
4
ha-ras induced
4

Similar Publications

Silencing of FZD7 Inhibits Endometriotic Cell Viability, Migration, and Angiogenesis by Promoting Ferroptosis.

Cell Biochem Biophys

January 2025

Department of Obstetrics and Gynecology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, China.

Background: Endometriosis (EMS) is a difficult gynecological disease to cure. Frizzled-7 (FZD7) has been shown to be associated with the development of EMS, but its specific mechanism remains unclarified. This study aims to explore the role of FZD7 in EMS.

View Article and Find Full Text PDF

NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications.

Cell Biol Toxicol

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.

NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.

View Article and Find Full Text PDF

IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.

View Article and Find Full Text PDF

The resistance of cancer cells to apoptosis poses a significant challenge in cancer therapy, driving the exploration of alternative cell death pathways such as pyroptosis, known for its rapid and potent effects. While initial efforts focused on chemotherapy-induced pyroptosis, concerns about systemic inflammation highlight the need for precise activation strategies. Photothermal therapy emerges as a promising non-invasive technique, minimizing pyroptosis-related side effects by targeting tumors spatially and temporally.

View Article and Find Full Text PDF

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!