In vitro embryotoxicity assessment with dental restorative materials.

J Dent

Axiogenesis AG, Joseph-Stelzmann-Str. 50, 50931 Köln, Germany.

Published: January 2005

Objectives: Resin (co)monomers may be released from restorative dental materials and can diffuse into the tooth pulp or the gingiva, and can reach the saliva and the circulating blood. Genotoxic potential of some dental composite components has been clearly documented. The genotoxic effects of xenobiotics can represent a possible step in tumor initiation and/or embryotoxicity/teratogenesis. A modified fluorescent mouse embryonic stem cell test (R.E.Tox) was used to test the embryotoxic potential of following dental restorative materials: Bisphenol A glycidylmethacrylate (BisGMA), urethanedimethacrylate (UDMA), hydroxyethylmethacrylate (HEMA), and triethyleneglycoldimethacrylate (TEGDMA), as well as some of their metabolic intermediates 2,3-epoxy-2-methyl-propionicacid-methylester (EMPME), methacrylic acid (MA), and 2,3-epoxy-2-methylpropionic acid (EMPA).

Methods: Mouse embryonic stem (ES) cells stably transfected with a vector containing the gene for the green fluorescent protein under control of the cardiac alpha-myosin heavy chain promoter were differentiated in the presence of various concentrations of the test compounds for 12 days. Fluorescence was measured using the TECAN Safire and values were expressed as percent of control values. To distinguish between cytotoxic and embryotoxic effects, all compounds were tested in a standard MTT assay.

Results: HEMA, TEGDMA and EMPME did not influence the differentiation process of ES cells towards cardiac myocytes. No cytotoxic effects were observed at any of the concentration levels tested. Exposure to BisGMA resulted in a 50% decrease in cell survival and a very strong inhibition of cell differentiation at 10(-5)M (p<0.01). Embryotoxic effects were also present at 10(-6) and 10(-7)M (p<0.05). EMPA induced a decrease in ES cell differentiation at 10(-5)M (p<0.01) without cytotoxic effects. No embryotoxic effects were induced at lower concentrations. Exposure to UDMA resulted in a slight decrease of cell differentiation at 10(-5)M (p<0.05). Exposure of cells to MA resulted in an increase of cardiac differentiation up to 150% (p<0.05) at 10(-5)M without cytotoxic effects.

Conclusions: BisGMA induced a significant high embryotoxic/teratogenic effect over a large range of concentration. Therefore attention should be focused on this dental monomer, which should be investigated further by in vivo experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2004.08.001DOI Listing

Publication Analysis

Top Keywords

dental restorative
8
restorative materials
8
potential dental
8
mouse embryonic
8
embryonic stem
8
vitro embryotoxicity
4
embryotoxicity assessment
4
dental
4
assessment dental
4
materials objectives
4

Similar Publications

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Background: Dental caries is one of the most common non-communicable diseases in humans. Various interventions are available for the management, of which microinvasive techniques such as infiltration, sealants, glass ionomers, are novel and convenient. The purpose of this systematic review and meta-analysis was to compare microinvasive techniques with noninvasive or invasive treatment modalities in terms of effectiveness in halting interproximal caries lesion progression radiographically assessed.

View Article and Find Full Text PDF

Fracture load of feldspar ceramic crowns: effects of surface treatments and aging.

Clin Oral Investig

January 2025

Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.

Objectives: To compare the impact of intaglio surface treatments - airborne particle abrasion and hydrofluoric acid (HF) etching - of feldspar ceramic (FEL) crowns on the fracture load (FL) and to investigate the effects of abutment materials and artificial aging. The aim was to assess whether etching could be replaced by an alternative surface roughening method.

Materials And Methods: FEL crowns had their intaglio surfaces either abraded (25 µm AlO, 0.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.

Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).

View Article and Find Full Text PDF

Mandibular and maxillary fractures are common in small animals and present significant challenges for repair due to the intricate anatomical features involved. This retrospective case series describes a technique for achieving rigid open mouth maxillomandibular fixation using interarch wiring while maintaining correct alignment between the upper and lower teeth with polymethylmethacrylate (PMMA) moulds of the canine teeth for treating maxillomandibular fractures in cats. The study includes a description of the postoperative outcomes and complications encountered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!