Two transition-metal tetrathioarsenate complexes, [Mn(dien)(2)](n)[Mn(dien)AsS(4)](2n).4nH(2)O (1) with one-dimensional water chain and [Mn(en)(3)](2)[Mn(en)(2)AsS(4)][As(3)S(6)] (2) with mixed-valence As(3+)/As(5+) character, have been synthesized and structurally characterized. The tetrathioarsenate(V) anion acts as a novel mu(2)-eta(1),eta(2) ligand in 1 and as a chelating ligand in 2. The two compounds exhibit intriguing semiconducting properties (E(g) = 2.18 eV (1), 2.48 eV (2)) and strong photoluminescence with the emission maximum occurring around 440 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic048579fDOI Listing

Publication Analysis

Top Keywords

incorporating transition
4
transition metal
4
metal complexes
4
complexes tetrathioarsenatesv
4
tetrathioarsenatesv syntheses
4
syntheses structures
4
structures properties
4
properties unprecedented
4
unprecedented [mndien2]n[mndienass4]2n4nh2o
4
[mndien2]n[mndienass4]2n4nh2o [mnen3]2[mnen2ass4][as3s6]
4

Similar Publications

The evolution of antitumor drug development has transitioned from single-agent chemotherapy to targeted therapy, immunotherapy, and more recently, multispecific drugs. These innovative drugs target multiple cellular or molecular pathways simultaneously, offering a more comprehensive anticancer approach and addressing some of the limitations inherent in traditional monotherapies. However, preclinical assessment of multispecific drugs remains challenging, as conventional tumor models often lack the necessary complexity to accurately reflect the interactions between various cell types and targets.

View Article and Find Full Text PDF

Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).

View Article and Find Full Text PDF

Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.

View Article and Find Full Text PDF

The global changes from 2001 that elevated substantially modified cell therapies to the definition of "medicinal product" have been the catalyst for the dramatic expansion of the field to its current and future commercial success. Europe was the first to incorporate human somatic cells into drug legislation with the medicines directive of 2001 (2001/83/EC), which led to the development of the term "advanced therapy medicinal products" (ATMPs) to cover all substantially modified products, tissue-engineered products and somatic cells that are not substantially modified but that are used non-homologously. For convenience, I use the term "ATMPs" throughout this review.

View Article and Find Full Text PDF

Background: There is a global need for synthetic speech development in multiple languages and dialects, as many children who cannot communicate using their natural voice struggle to find synthetic voices on high-technology devices that match their age, social and linguistic background.

Aims: To document multiple stakeholders' perspectives surrounding the quality, acceptability and utility of newly created synthetic speech in three under-resourced South African languages, namely South African English, Afrikaans and isiXhosa.

Methods & Procedures: A mixed methods research design was selected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!