On partial contraction analysis for coupled nonlinear oscillators.

Biol Cybern

Nonlinear Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,

Published: January 2005

AI Article Synopsis

  • This paper presents a method for analyzing networks of coupled nonlinear oscillators, focusing on synchronization, antisynchronization, and oscillator death.
  • The approach uses nonlinear contraction theory, yielding exact global results applicable to various network structures and sizes.
  • Findings indicate that with sufficiently strong coupling, synchronization can be guaranteed, and the paper also addresses scenarios with irregular and asynchronous network structures, relevant to systems like flocks of oscillators.

Article Abstract

We describe a simple yet general method to analyze networks of coupled identical nonlinear oscillators and study applications to fast synchronization, locomotion, and schooling. Specifically, we use nonlinear contraction theory to derive exact and global (rather than linearized) results on synchronization, antisynchronization, and oscillator death. The method can be applied to coupled networks of various structures and arbitrary size. For oscillators with positive definite diffusion coupling, it can be shown that synchronization always occurs globally for strong enough coupling strengths, and an explicit upper bound on the corresponding threshold can be computed through eigenvalue analysis. The discussion also extends to the case when network structure varies abruptly and asynchronously, as in "flocks" of oscillators or dynamic elements.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00422-004-0527-xDOI Listing

Publication Analysis

Top Keywords

nonlinear oscillators
8
partial contraction
4
contraction analysis
4
analysis coupled
4
coupled nonlinear
4
oscillators
4
oscillators describe
4
describe simple
4
simple general
4
general method
4

Similar Publications

Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber.

Micromachines (Basel)

January 2025

Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.

A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.

View Article and Find Full Text PDF

Radio photonic technologies have emerged as a promising solution for addressing microwave frequency synthesis challenges in current and future communication and sensing systems. One particularly effective approach is the optoelectronic oscillator (OEO), a simple and cost-effective electro-optical system. The OEO can generate microwave signals with low phase noise and high oscillation frequencies, often outperforming traditional electrical methods.

View Article and Find Full Text PDF

Green approach to synthesis polymer composites based on chitosan with desired linear and non-linear optical characteristics.

Sci Rep

January 2025

Turning Trash to Treasure Laboratory (TTTL), Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq.

The current study used sustainable and green approaches to convey polymer composites with desired optical properties. The extracted green tea dye (GTD) enriched with ligands was used to synthesize zinc metal complexes. Green chitosan biopolymer incorporated with green synthesized metal complex using casting technique was used to deliver polymer composites with improved optical properties.

View Article and Find Full Text PDF

Acoustic droplet vaporization (ADV) plays a crucial role in ultrasound-related biomedical applications. While previous models have examined the stages of nucleation, growth, and oscillation in isolation, which may limit their ability to fully describe the entire ADV process. To address this, our study developed an integrated model that unifies these three stages of ADV, stimulated by a continuous nonlinear dual-frequency ultrasound wave.

View Article and Find Full Text PDF

Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!