Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system.

Ann N Y Acad Sci

Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1-16132 Genova, Italy.

Published: December 2004

CD38, a multifunctional enzyme, generates two potent Ca2+-releasing signal metabolites, cyclic ADP-ribose (cADPR) and NAADP+, thereby upmodulating many important Ca2+-mediated cell functions. A topological paradox has long been recognized, as CD38 is an ectoenzyme, or an intravesicularly located enzyme in subcellular membrane vesicles, therefore apparently shielded from its substrate NAD+. Moreover, cADPR generated by CD38 should be unavailable to its target Ca2+ stores, the ryanodine receptors (RyR). We have solved this paradox by identifying some NAD+ and cADPR transmembrane transporters, whose interplay mediates a hitherto-unrecognized subcellular and intercellular trafficking of nucleotides that enhances intracellular Ca2+ ([Ca2+]i). Connexin 43 (Cx43) hemichannels mediate an equilibrative transport of NAD+ from the cytosol to the active site of CD38 (either ectocellular or intravesicular). Subsequent translocation of in situ-generated cADPR to reach the RyR is performed, (i) by CD38 itself (concentrative) or (ii) by nucleoside transporters (NT) (one equilibrative and three concentrative). Besides this autocrine mechanism, the same transporters also mediate intercellular (paracrine) trafficking. Thus, Cx43+ and CD38+ cells can provide cADPR to neighboring RyR+ parenchymal cells and enhance their [Ca2+]i levels and Ca2+-dependent functions accordingly. Examples of cADPR-responsive cells via paracrine processes include (i) smooth myocytes, (ii) 3T3 murine fibroblasts, (iii) hippocampal neurons, and (iv) human hemopoietic stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1322.021DOI Listing

Publication Analysis

Top Keywords

nad+ cadpr
8
cd38
5
cadpr
5
autocrine paracrine
4
paracrine calcium
4
calcium signaling
4
signaling cd38/nad+/cyclic
4
cd38/nad+/cyclic adp-ribose
4
adp-ribose system
4
system cd38
4

Similar Publications

Objective: Metabolic reprogramming plays a critical role in modulating the innate and adaptive immune response, but its role in cutaneous autoimmune diseases, such as cutaneous lupus erythematosus (CLE), is less well studied. An improved understanding of the metabolic pathways dysregulated in CLE may lead to novel treatment options, biomarkers and insights into disease pathogenesis. The objective was to compare metabolomic profiles in the skin and sera of CLE and control patients using liquid chromatography-mass spectrometry (LC-MS).

View Article and Find Full Text PDF

Structure-guided insights into TIR-mediated bacterial and eukaryotic immunity.

Structure

January 2025

Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. Electronic address:

Within the course of evolution, TIR (Toll/interleukin-1 receptor) domains acquired a myriad of functional specificities. This has significantly added to their well-established roles in innate immune signaling. These additional functions include nicotinamide adenine dinucleotide (NAD)(P) hydrolase, RNA/DNA nuclease (in plants), CN (cyclic nucleotide) cyclase, and base exchanger activities.

View Article and Find Full Text PDF

Gap junction intercellular communications regulates activation of SARM1 and protects against axonal degeneration.

Cell Death Dis

January 2025

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a form of potentially lethal gastrointestinal inflammation that primarily affects preterm neonates. It is crucial to recognize that, while the disease carries significant risks, timely and effective medical intervention can greatly enhance the chances of survival. Additionally, NEC is closely linked to the activation of macrophages, highlighting the complex interplay between the immune response and disease progression.

View Article and Find Full Text PDF

Background: Approximately 70% of patients receiving neurotoxic chemotherapy (e.g., paclitaxel or vincristine) will develop chemotherapy-induced peripheral neuropathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!