Mitotic catastrophe is the response of mammalian cells to mitotic DNA damage. It produces tetraploid cells with a range of different nuclear morphologies from binucleated to multimicronucleated. In response to DNA damage, checkpoints are activated to delay cell cycle progression and to coordinate repair. Cells in different cell cycle phases use different mechanisms to arrest their cell cycle progression. It has remained unclear whether the termination of mitosis in a mitotic catastrophe is regulated by DNA damage checkpoints. Here, we report the presence of a mitotic exit DNA damage checkpoint in mammalian cells. This checkpoint delays mitotic exit and prevents cytokinesis and, thereby, is responsible for mitotic catastrophe. The DNA damage-induced mitotic exit delay correlates with the inhibition of Cdh1 activation and the attenuated degradation of cyclin B1. We demonstrate that the checkpoint is Chk1-dependent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC545827PMC
http://dx.doi.org/10.1073/pnas.0409130102DOI Listing

Publication Analysis

Top Keywords

dna damage
20
mitotic catastrophe
16
mitotic exit
16
cell cycle
12
mitotic
9
dna damage-induced
8
damage-induced mitotic
8
exit dna
8
damage checkpoint
8
mammalian cells
8

Similar Publications

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.

View Article and Find Full Text PDF

Alloimmunization during pregnancy occurs when a mother produces antibodies against fetal antigens, leading to complications like hemolytic disease of the fetus and newborn (HDFN) and fetal and neonatal alloimmune thrombocytopenia (FNAIT). HDFN involves destruction of fetal red blood cells, potentially causing severe anemia, hydrops fetalis, and fetal death. FNAIT affects fetal platelets and possibly endothelial cells, resulting in risk of intracranial hemorrhage and brain damage.

View Article and Find Full Text PDF

The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!