We investigated the role N-methyl-d-aspartate (NMDA) receptor subunits play in shaping excitatory synaptic currents in cultures of cerebellar granule cells (CGCs) from NR2A knockout (NR2A-/-) and wild-type (+/+) mice. Cultures were maintained in a condition that facilitates the occurrence of functional synapses, allowing us to record NMDA-miniature excitatory postsynaptic currents (mEPSCs) in addition to NMDA receptor-mediated whole-cell currents at three ages in vitro. Whole-cell NMDA current density decreased with development in both strains though currents from NR2A-/- neurones demonstrated greater sensitivity to CP101 606, an NR2B subunit specific blocker. Sensitivity to Mg(2+) blockade decreased with age in vitro in +/+ but not in NR2A-/- CGCs. Immunocytochemistry revealed that dendrites and somas displayed distinct NR1 and NR2A subunit clusters which became increasingly colocalized in +/+ neurones. Qualitatively the overall NR2B subunit staining pattern was similar in +/+ and NR2A-/- neurones throughout development, suggesting that the NR2B subunit distribution is not mediated by the NR2A subunit. In addition, staining with markers for excitatory synapses showed that expression of NR2A subunit (but not NR2B) increases at both synaptic and extrasynaptic sites in +/+ neurones during development. In parallel, NMDA-mEPSCs were faster in +/+ compared with NR2A-/- neurones at all time points studied, suggesting that the NR2A subunit begins to replace NR2B-rich NMDA receptors even at early stages of development. Many NR2A-/- neurones were devoid of NMDA-mEPSCs at the later time point, and transfection of the NR2A subunit in these neurones restored fast decay and the occurrence of NMDA-mEPSCs. Taken together, our results indicate that the NR2A subunit is mainly responsible for the developmental changes observed in the maturation of excitatory synapses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665615 | PMC |
http://dx.doi.org/10.1113/jphysiol.2004.079467 | DOI Listing |
Anesth Analg
November 2024
From the Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.
Background: R-Glabridin is a major flavonoid of licorice (Glycyrrhiza glabra) root and known to modulate GABAA receptors, which are targets of many clinical hypnotics. However, R-glabridin hypnotic activity has not been reported in animals.
Methods: Inverted photomotor responses (IPMRs) were used to assess the hypnotic effects of natural R-glabridin and synthetic R/S-glabridin in wild-type zebrafish larvae and transgenic larvae lacking functional GABAA receptor β3 subunits (β30/0).
Cells
November 2024
Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA..
Enhancement of neuronal plasticity by small-molecule therapeutics protects cognitive skills and also ameliorates progressive neurodegenerative pathologies like Alzheimer's disease (AD) and dementia. One such compound, a novel histone deacetylase 2 (HDAC2) inhibitor named JRM-28, was shown here to enhance dendritic strength, augment spine density, and upregulate post-synaptic neurotransmission in hippocampal neurons. The molecular basis for this effect correlates with JRM-28-induced upregulation of the transcription of cAMP response element-binding protein(CREB), induction of its transcriptional activity, and subsequent stimulation of expressions of CREB-dependent plasticity-associated genes, such as those encoding N-methyl-D-aspartate (NMDA) receptor subunit NR2A and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1.
View Article and Find Full Text PDFBehav Brain Res
March 2025
Department of Korean Internal Medicine, College of Korean Medicine, Sang-Ji University, 3 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea. Electronic address:
J Physiol Investig
September 2024
Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA.
It is well known that oligodendrocyte-associated Nogo-A protein is an important regulator of axonal outgrowth and an important inhibitor of functional recovery and anatomical plasticity after central nervous system (CNS) injury. Abundant studies of oligodendrocyte-associated Nogo-A function in the uninjured rodent have suggested a role in neuronal development and synaptic function. On the other hand, the roles of neuron-associated (i.
View Article and Find Full Text PDFSci Rep
October 2024
Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!