Synthetic route and detailed characterization of the macrocyclic complex [Fe(II)(dohpn)(py)(CO)](ClO4) (dohpn = 2,3,9,10-tetramethyl-1,4,8,11-tetraazaundecane-1,3,8,10-tetraen-11-ol-1-olate and py = pyridine) based on analytical, spectrometric and spectroscopic methods are herein reported. The corresponding vibrational and electronic features are discussed and a consistent assignment is proposed on the basis of semi-empirical theoretical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2004.05.023 | DOI Listing |
Chemistry
January 2025
Tianjin University, Department of Chemistry, 92 Weijin Road, 300072, Tianjin, CHINA.
Hydrogen peroxide (H2O2) is a versatile chemical widely used in various industries. The traditional anthraquinone method for H2O2 synthesis has environmental and safety concerns due to the use of organic solvents and hazardous by-products. The direct synthesis of H2O2 from H2 and O2 poses risks of flammability and explosion.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands.
We present the synthesis, structural analysis, and remarkable reactivity of the first carbon nanohoop that fully incorporates ferrocene in the macrocyclic backbone. The high strain imposed on the ferrocene by the curved nanohoop structure enables unprecedented photochemical reactivity of this otherwise photochemically inert metallocene complex. Visible light activation triggers a ring-opening of the nanohoop structure, fully dissociating the Fe-cyclopentadienyl bonds in the presence of 1,10-phenanthroline.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
The local electric field (LEF) plays an important role in the catalytic process; however, the precise construction and manipulation of the electric field microenvironment around the active site remains a significant challenge. Here, we have developed a supramolecular strategy for the implementation of a LEF by introducing the host macrocycle 18-crown-6 (18C6) into a cobalt phthalocyanine (CoPc)-containing covalent organic framework (COF). Utilizing the supramolecular interaction between 18C6 and potassium ion (K), a locally enhanced K concentration around CoPc can be built to generate a LEF microenvironment around the catalytically active Co site.
View Article and Find Full Text PDFDalton Trans
January 2025
Univ. Bourgogne Europe, CNRS, ICMUB (UMR 6302) Institut de Chimie Moléculaire de l'Université de Bourgogne, 9, Avenue Alain Savary, 21 000 Dijon, France.
We report herein the synthesis and full spectroscopic characterization of two AB-corrole phosphonic acids. Thanks to the presence of a phosphonic acid functional group at the 10--position, the corroles were covalently linked to the hexanuclear Zr clusters of a PCN-222 metal-organic framework (MOF). After the insertion of cobalt into the corrole macrocycle, the metal complexes are able to bind small volatile molecules such as carbon monoxide (CO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!