Lineage diversification in the vertebrate neural crest may occur via instructive signals acting on pluripotent cells, and/or via early specification of subpopulations towards particular lineages. Mesencephalic neural crest cells normally form cholinergic parasympathetic neurons in the ciliary ganglion, while trunk neural crest cells normally form both catecholaminergic and cholinergic neurons in sympathetic ganglia. In contrast to trunk neural crest cells, mesencephalic neural crest cells apparently fail to express the catecholaminergic transcription factor dHAND in response to BMPs in the head environment. Here, we show that migrating quail mesencephalic neural crest cells grafted into the trunk of host chick embryos colonise the sympathetic ganglia. While many express dHAND and form tyrosine hydroxylase (TH)-positive catecholaminergic neurons, the proportion that expresses either dHAND or TH is significantly smaller than that of quail trunk neural crest cells under the same conditions. Furthermore, the proportion of quail mesencephalic neural crest cells that is TH+ in the sympathetic ganglia decreases with time, while the proportion of TH+ quail trunk neural crest-derived cells increases. Thus, a subset of mesencephalic neural crest cells fails to express dHAND or TH in the sympathetic ganglia, while a further subset initiates but fails to maintain TH expression. Taken together, our results suggest that a subpopulation of migrating mesencephalic neural crest cells is refractory to catecholaminergic differentiation signals in the trunk. We suggest that this heterogeneity, together with local signals that repress catecholaminergic differentiation, may ensure that most ciliary neurons adopt a cholinergic fate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2004.10.024DOI Listing

Publication Analysis

Top Keywords

neural crest
44
crest cells
36
mesencephalic neural
28
trunk neural
16
sympathetic ganglia
16
neural
12
crest
11
cells
11
differentiation signals
8
signals trunk
8

Similar Publications

Deciphering the dynamic single-cell transcriptional landscape in the ocular surface ectoderm differentiation system.

Life Med

October 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China.

The ocular surface ectoderm (OSE) is essential for the development of the ocular surface, yet the molecular mechanisms driving its differentiation are not fully understood. In this study, we used single-cell transcriptomic analysis to explore the dynamic cellular trajectories and regulatory networks during the differentiation of embryonic stem cells (ESCs) into the OSE lineage. We identified nine distinct cell subpopulations undergoing differentiation along three main developmental branches: neural crest, neuroectodermal, and surface ectodermal lineages.

View Article and Find Full Text PDF

Unlabelled: Neuroblastoma (NB) is a highly vascularized pediatric tumor arising from undifferentiated neural crest cells early in life, exhibiting both traditional endothelial-cell-driven vasculature and an intriguing alternative vasculature. The alternative vasculature can arise from cancer cells undergoing transdifferentiation into tumor-derived endothelial cells (TEC), a trait associated with drug resistance and tumor relapse. The lack of effective treatments targeting NB vasculature primarily arises from the challenge of establishing predictive in vitro models that faithfully replicate the alternative vasculature phenomenon.

View Article and Find Full Text PDF

Introduction: The Wnt/planar cell polarity (PCP) signaling pathway is pivotal in regulating various biological processes such as early embryonic development, neural crest cell migration, and cancer invasion. Despite advances in understanding the role of Wnt/PCP pathway dysregulation in tumorigenesis, numerous unanswered questions remain. Our study focused on VANGL2, a core PCP gene, to elucidate its potential mechanistic involvement in cancer development.

View Article and Find Full Text PDF

GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.

View Article and Find Full Text PDF

Background: The most prevalent extracranial solid tumor in childhood is neuroblastoma (NB), which arises from undifferentiated neural crest cells. However, the prognosis of this condition remains unfavorable, and the underlying mechanisms of its origin are still elusive. Therefore, this study aimed to investigate the specific mechanism underlying NEAT1-1 in NB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!