The regulation mechanism for expression of versatile peroxidase MnP2 by the basidiomycete fungus Pleurotus ostreatus was examined using chemically defined synthetic media. Expression of MnP2 was down-regulated at the transcription level by nutrient nitrogen, e.g., NH(4)(+), arginine or urea. As is often the case with other fungal manganese peroxidases, active MnP2 was not detected when Mn(2+) was omitted from the culture, while mnp2 transcription was barely affected by Mn(2+). However, Mn(2+) can be substituted by an MnP2 substrate, Poly R-478, since active MnP2 was detected extracellularly when the compound was added to the culture without Mn(2+). Enzyme stability assays with the purified MnP2 indicated an indispensable requirement for a substrate that can be used to complete the catalytic cycle, and avoid inactivation resulting from an excess H(2)O(2). This report is the first of the Mn(2+)-independent production of an active versatile peroxidase by P. ostreatus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2004.12.084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!