Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus.

BMC Microbiol

Dept. of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA.

Published: January 2005

Background: Although Aspergillus fumigatus is an important human fungal pathogen there are few expression systems available to study the contribution of specific genes to the growth and virulence of this opportunistic mould. Regulatable promoter systems based upon prokaryotic regulatory elements in the E. coli tetracycline-resistance operon have been successfully used to manipulate gene expression in several organisms, including mice, flies, plants, and yeast. However, the system has not yet been adapted for Aspergillus spp.

Results: Here we describe the construction of plasmid vectors that can be used to regulate gene expression in A. fumigatus using a simple co-transfection approach. Vectors were generated in which the tetracycline transactivator (tTA) or the reverse tetracycline transactivator (rtTA2s-M2) are controlled by the A. nidulans gpdA promoter. Dominant selectable cassettes were introduced into each plasmid, allowing for selection following gene transfer into A. fumigatus by incorporating phleomycin or hygromycin into the medium. To model an essential gene under tetracycline regulation, the E. coli hygromycin resistance gene, hph, was placed under the control of seven copies of the TetR binding site (tetO7) in a plasmid vector and co-transfected into A. fumigatus protoplasts together with one of the two transactivator plasmids. Since the hph gene is essential to A. fumigatus in the presence of hygromycin, resistance to hygromycin was used as a marker of hph reporter gene expression. Transformants were identified in which the expression of tTA conferred hygromycin resistance by activating expression of the tetO7-hph reporter gene, and the addition of doxycycline to the medium suppressed hygromycin resistance in a dose-dependent manner. Similarly, transformants were identified in which expression of rtTA2s-M2 conferred hygromycin resistance only in the presence of doxycycline. The levels of doxycycline required to regulate expression of the tetO7-hph reporter gene were within non-toxic ranges for this organism, and low-iron medium was shown to reduce the amount of doxycycline required to accomplish regulation.

Conclusions: The vectors described in this report provide a new set of options to experimentally manipulate the level of specific gene products in A. fumigatus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC546209PMC
http://dx.doi.org/10.1186/1471-2180-5-1DOI Listing

Publication Analysis

Top Keywords

hygromycin resistance
20
gene expression
16
reporter gene
12
gene
10
expression
9
fungal pathogen
8
aspergillus fumigatus
8
tetracycline transactivator
8
transformants identified
8
identified expression
8

Similar Publications

is a halotolerant black yeast commonly found in hypersaline environments. This yeast is also the causative agent of tinea nigra, a superficial mycosis of the palm of the hand and soles of the feet of humans. In addition to their remarkable halotolerance, this black yeast exhibits an unconventional cell division cycle, alternating between fission and budding cell division.

View Article and Find Full Text PDF

Prime editing enables precise genome modification of a hybrid.

aBIOTECH

December 2024

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400 China.

Unlabelled: CRISPR/Cas-based genome editing has been extensively employed in the breeding and genetic improvement of trees, yet precise editing remains challenging in these species. Prime editing (PE), a revolutionary technology for precise editing, allows for arbitrary base substitutions and the insertion/deletion of small fragments. In this study, we focused on the model tree poplar 84K ( × ).

View Article and Find Full Text PDF

Genetic transformation of plants is pivotal for advancing biotechnology, with success depending largely on effective selection methods. has emerged as a model plant due to its evolutionary importance, ease of manipulation, and simple genetic structure. However, inconsistent antibiotic performance and limited studies on optimal selection agent concentrations have posed challenges.

View Article and Find Full Text PDF

Establishment of an efficient Agrobacterium tumefaciens-mediated transformation system for an Armillaria species, a host of the fully mycoheterotrophic plant Gastrodia elata.

Folia Microbiol (Praha)

December 2024

Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.

Article Synopsis
  • The genus Armillaria includes fungi that can cause root-rot diseases in plants and have symbiotic relationships, particularly with the mycoheterotrophic orchid Gastrodia elata.
  • Researchers isolated a strain, Arm37, from G. elata, which can be cultured in the lab and forms a symbiotic relationship with the orchid.
  • A successful Agrobacterium tumefaciens-mediated transformation (ATMT) system was developed for Arm37, enabling gene expression and silencing, which serves as a useful tool for studying the interactions between Armillaria fungi and G. elata.
View Article and Find Full Text PDF

A Cell-Based Screening Assay for rRNA-Targeted Drug Discovery.

ACS Infect Dis

December 2024

Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States.

Worldwide, bacterial antibiotic resistance continues to outpace the level of drug development. One way to counteract this threat to society is to identify novel ways to rapidly screen and identify drug candidates in living cells. Developing fluorescent antibiotics that can enter microorganisms and be displaced by potential antimicrobial compounds is an important but challenging endeavor due to the difficulty in entering bacterial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!