H9c2 cardiac muscle cells express all somatostatin receptor subtypes.

J Endocrinol Invest

Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Turin, Turin, Italy.

Published: October 2004

The aim of the present study was to verify the hypothesis that SS receptor subtypes (SSTRs) are expressed by H9c2 cardiac muscle cells. SSTRs expression was investigated by RT-PCR and Western blot analysis at both mRNA and protein level. Our findings demonstrate that H9c2 cells express all SSTR subtypes I-5 (SSTRI-5) at the mRNA and protein level. Thus, H9c2 cells would represent a new model to study the direct biological activities of SS and its analogues at the cardiac level.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03346272DOI Listing

Publication Analysis

Top Keywords

h9c2 cardiac
8
cardiac muscle
8
muscle cells
8
cells express
8
receptor subtypes
8
mrna protein
8
protein level
8
h9c2 cells
8
h9c2
4
cells
4

Similar Publications

G protein-coupled receptor 40 (GPR40) is gaining recognition as a potential therapeutic target for several metabolic disturbances, such as hyperglycemia and excessive inflammation. GPR40 is expressed in various tissues, including the heart; however, its specific roles in cardiomyocytes remain unknown. The objective of the present study was to investigate whether treatment with AM1638, a GPR40-full agonist, reduces palmitate-mediated cell damage in H9c2 rat cardiomyocytes.

View Article and Find Full Text PDF

Objective: Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF.

View Article and Find Full Text PDF
Article Synopsis
  • Myocardial ischemia/reperfusion injury (MIRI) is a major complication after myocardial infarction, and the role of mitochondria-related genes in this process is not well understood.
  • Researchers utilized specific datasets (GSE67308 and GSE61592) to identify genes associated with MIRI and found glycine decarboxylase (Gldc) to be significantly elevated in MIRI models.
  • Experiments showed that reducing Gldc levels improved cell survival and reduced inflammation during hypoxia/reperfusion injury, indicating its potential as a diagnostic and therapeutic target for MIRI.
View Article and Find Full Text PDF

Targeting the ALKBH5-NLRP3 positive feedback loop alleviates cardiomyocyte pyroptosis after myocardial infarction.

Eur J Pharmacol

December 2024

Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China. Electronic address:

Several studies have associated the epitranscriptomic RNA modification of N6-methyladenosine (mA) with cardiovascular diseases; however, how mA modification affects cardiomyocyte pyroptosis after myocardial infarction (MI) remains unknown. Here, we showed that AlkB homolog 5 (ALKBH5), an mA demethylase, is crucial in cardiomyocyte pyroptosis after MI. We used MI rat and mouse models, a cell hypoxia model of rat primary cardiomyocytes (RCMs), and rat embryonic ventricle cell line (H9c2) to explore the functional role of mA modification and ALKBH5 in the heart and cardiomyocytes.

View Article and Find Full Text PDF

The aim of this study was to evaluate for the effects of forsythiaside A (FA) on myocardial injury in streptozotocin (STZ)-induced diabetes mice. Blood glucose (BG), serum triglycerides (TG), lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), cardiac troponin (cTnI), malondialdehyde (MDA), superoxide dismutase (SOD) levels were detected in STZ mice. The structure and function of heart was observed via cardiac ultrasound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!