The pathology of chronic dermal ulcers is characterized by excessive proteolytic activity which degrades extracellular matrix. The transforming growth factor-beta (TGF-beta) has been identified as an important component of wound healing. Recent developments in molecular therapy offer exciting prospects for the modulation of wound healing, specifically those targeting TGF-beta. We investigated the effect of TGF-beta antisense oligonucleotides on the mRNA expression of matrix metalloproteinases in cultured human keratinocytes, fibroblasts and endothelial cells using multiplex RT-PCR. The treatment of keratinocytes and fibroblasts with TGF-beta antisense oligonucleotides resulted in a significant decrease of expression of mRNA of MMP-1 and MMP-9 compared to controls. Accordingly, a decreased expression of MMP-1 mRNA in endothelial cells was detectable. Other MMPs were not affected. Affecting all dermal wound-healing-related cell types, TGF-beta antisense oligonucleotide technology may be a potential therapeutic option for the inhibition of proteolytic tissue destruction in chronic wounds. Pharmaceutical intervention in this area ultimately may help clinicians to proactively intervene in an effort to prevent normal wounds from becoming chronic.
Download full-text PDF |
Source |
---|
Epigenetics
December 2024
Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
Cell Commun Signal
September 2024
Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.
Background: Treatment options for the Triple-Negative Breast Cancer (TNBC) subtype remain limited and the outcome for patients with advanced TNBC is very poor. The standard of care is chemotherapy, but approximately 50% of tumors develop resistance.
Methods: We performed gene expression profiling of 58 TNBC tumor samples by microarray, comparing chemosensitive with chemoresistant tumors, which revealed that one of the top upregulated genes was TGFβ2.
Exp Cell Res
September 2024
SWT Institute for Renal Research, Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, London, UK; St Georges' University of London, London, UK. Electronic address:
TGFβ1 is a powerful regulator of fibrosis; secreted in a latent form, it becomes active after release from the latent complex. During tissue fibrosis, the EDA + isoform of cellular fibronectin is overexpressed. In pulmonary fibrosis it has been proposed that the fibronectin splice variant including an EDA domain (FN EDA+) activates latent TGFβ.
View Article and Find Full Text PDFBMC Vet Res
August 2024
Research Laboratory for Immunity Enhancement in Humans and Domestic Animals, Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Chiang Mai, Thailand.
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a poor innate immune response following infection. This study evaluates the effects of transforming growth factor beta 1 (TGFβ1) up-regulated by PRRSV on gene expressions of co-stimulatory molecules, type I interferon (IFN), type I IFN-regulated genes (IRGs), pattern recognition receptors, and pro-inflammatory cytokines in PRRSV-inoculated monocyte-derived macrophages (MDMs). Phosphorothioate-modified antisense oligodeoxynucleotides (AS ODNs) specific to various regions of porcine TGFβ1 mRNA were synthesized, and those specific to the AUG region efficiently knockdown TGFβ1 mRNA expression and protein translation.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, Surrey TW20 0EX, UK.
Periostin, a multifunctional 90 kDa protein, plays a pivotal role in the pathogenesis of fibrosis across various tissues, including skeletal muscle. It operates within the transforming growth factor beta 1 (Tgf-β1) signalling pathway and is upregulated in fibrotic tissue. Alternative splicing of Periostin's C-terminal region leads to six protein-coding isoforms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!