Upregulation of osteopontin by osteocytes deprived of mechanical loading or oxygen.

J Bone Miner Res

Orthopaedic Science Laboratories, Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98104-2499, USA.

Published: February 2005

Unlabelled: The pathway(s) by which disuse is transduced into locally mediated osteoclastic resorption remain unknown. We found that both acute disuse (in vivo) and direct hypoxia (in vitro) induced rapid upregulation of OPN expression by osteocytes. Within the context of OPN's role in osteoclast migration and attachment, hypoxia-induced osteocyte OPN expression may serve to mediate disuse-induced bone resorption.

Introduction: We have recently reported that disuse induces osteocyte hypoxia. Because hypoxia upregulates osteopontin (OPN) in nonconnective tissue cells, we hypothesized that both disuse and hypoxia would rapidly elevate expression of OPN by osteocytes.

Materials And Methods: The response of osteocytes to 24 h of disuse was explored by isolating the left ulna diaphysis of adult male turkeys from loading (n = 5). Cortical osteocytes staining positive for OPN were determined using immunohistochemistry and confocal microscopy. In vitro experiments were performed to determine if OPN expression was altered in MLO-Y4 osteocytes by direct hypoxia (3, 6, 24, and 48 h) or hypoxia (3 and 24 h) followed by 24 h of reoxygenation. A final in vitro experiment explored the potential of protein kinase C (PKC) to regulate hypoxia-induced osteocyte OPN mRNA alterations.

Results: We found that 24 h of disuse significantly elevated osteocyte OPN expression in vivo (145% versus intact bones; p = 0.02). We confirmed this finding in vitro, by observing rapid and significant upregulation of OPN protein expression after 24 and 48 h of hypoxia. Whereas 24 h of reoxygenation after 3 h of hypoxia restored normal osteocyte OPN expression levels, 24 h of reoxygenation after 24 h of hypoxia did not mitigate elevated osteocyte OPN expression. Finally, preliminary inhibitor studies suggested that PKC serves as a potent upstream regulator of hypoxia-induced osteocyte OPN expression.

Conclusions: Given the documented roles of OPN as a mediator of environmental stress (e.g., hypoxia), an osteoclast chemotaxant, and a modulator of osteoclastic attachment to bone, we speculate that hypoxia-induced osteocyte OPN expression may serve to mediate disuse-induced osteoclastic resorption. Furthermore, it seems that a brief window of time exists in which reoxygenation (as might be achieved by reloading bone) can serve to inhibit this pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1435734PMC
http://dx.doi.org/10.1359/JBMR.041004DOI Listing

Publication Analysis

Top Keywords

opn expression
28
osteocyte opn
28
hypoxia-induced osteocyte
16
opn
14
hypoxia
10
expression
9
osteoclastic resorption
8
direct hypoxia
8
rapid upregulation
8
upregulation opn
8

Similar Publications

SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β.

J Exp Clin Cancer Res

December 2024

Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease characterized by a heterogeneous tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) constitute the major innate immune population in the TIME where they facilitate crucial regulatory processes that participate in malignant tumor progression. SPP1 + macrophages (SPP1 + Macs) are found in many cancers, but their effects on HNSCC remain unknown.

View Article and Find Full Text PDF

Molecular insights into the therapeutic mechanisms of Bushen-Qiangdu-Zhilv decoction for ankylosing spondylitis.

J Ethnopharmacol

December 2024

Guangzhou University of Chinese Medicine, 510006 Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) 510120 Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research Guangzhou University of Chinese Medicine, 510120 Guangzhou, China. Electronic address:

Ethnopharmacological Relevance: Ankylosing spondylitis (AS) is a chronic rheumatic immune disease characterized by high disability rates, significantly affecting patients' quality of life. BuShen-QiangDu-ZhiLv Decoction (BQZD), developed by the renowned traditional Chinese medicine practitioner Jiao Shude, has been traditionally used for AS treatment. However, the bioactive components and the precise mechanisms underlying BQZD's therapeutic effects remain largely unexplored.

View Article and Find Full Text PDF

Plasma nitriding is one of the surface modifications that show more effectiveness than other methods. In this study, the plasma-based ion implantation (PBII) technique was performed on the surface of titanium alloy (Ti-6Al-4V, Ti64) using a mixture of nitrogen (N) and argon (Ar), resulting in a plasma-nitrided surface (TiN-Ti64). The surface composition of the TiN-Ti64 was verified through X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Infant Fecal Fermentation Metabolites of Osteopontin and 2'-Fucosyllactose Support Intestinal Barrier Function.

J Agric Food Chem

December 2024

School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China.

In this study, we investigated the effects of infant fecal fermentation-derived metabolites of digested osteopontin (OPN) and 2'-fucosyllactose (2'-FL), either individually or in combination, on intestinal barrier function using a Caco-2/HT-29 coculture cell model. Our results suggested that the OPN/2'-FL (1:36-1:3) cofermentation metabolites improved epithelial barrier integrity by supporting the mRNA and protein expression of occludin, claudin-1, claudin-2, ZO-1, and ZO-2. All of the OPN/2'-FL treatments decreased the production of IL-1β, IL-6, and TNF-α, while the OPN/2'-FL ratio increased IL-10 production by inhibiting activation of the MyD88/IκB-α/NF-κB signaling pathway.

View Article and Find Full Text PDF

Milk osteopontin has high iron-binding capacity and facilitates iron absorption in intestinal cells.

J Dairy Sci

January 2025

Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark. Electronic address:

Insufficient absorption of iron and the consequent development of iron deficiency have serious health consequences. Hence, identification and development of iron delivery systems that can increase the bioavailability and uptake of dietary iron are important. Osteopontin (OPN) is an acidic and highly phosphorylated integrin-binding protein found in milk where it exists as a full-length protein and as N-terminally derived fragments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!