A set of Thatcher near-isogenic lines and two breeding lines were used to examine sequence tagged site (STS) markers linked to leaf rust resistance genes Lr9, Lr10, Lr19, Lr24, Lr28, Lr29, Lr35, and a simple sequenced repeat (SSR) marker for Lr39. The selected STS markers for resistance genes Lr9, Lr10, Lr19, Lr24 and Lr28 were identified in seven accessions by seven European laboratories. Near-isogenic lines of the spring wheat Thatcher were used as positive controls. Markers for resistance genes Lr9, Lr10, Lr19, Lr24 were identified in all seven laboratories as amplification products of 1100 bp, 310 bp, 130 bp and 310 bp, respectively. The STS markers linked to resistance genes Lr9, Lr10, Lr19, Lr24, Lr29, Lr35 and the SSR marker for Lr39 were robust and highly specific for these genes and will be useful in marker-assisted selection in wheat. However, the amplification product of 378 bp that corresponded with resistance gene Lr28 was detected in all accessions including genotypes lacking this gene in all seven laboratories. This marker needs to be improved.
Download full-text PDF |
Source |
---|
Chem Commun (Camb)
January 2025
Beijing Life Science Academy, Beijing 102206, China.
Detection of low-abundance mutations for the early discovery of fungicide-resistant fungal pathogens is highly demanded, but remains challenging. Herein, we developed a dual-recognition strategy, termed PARPA, involving s Argonaute (pfAgo)-mediated elimination of wild-type fungal genes and CRISPR/Cas12a-based amplicon recognition. This assay can detect fungicide-resistant at relative abundances as low as 0.
View Article and Find Full Text PDFJ Appl Genet
January 2025
Departamento de Ciências Exatas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil.
Natural and artificial selection in domesticated animals can cause specific changes in genomic regions known as selection signatures. Our study used the integrated haplotype score (iHS) and Tajima's D tests within non-overlapping windows of 100 kb to identify selection signatures, in addition to genetic diversity and linkage disequilibrium estimates in 9498 sheep from breeds in Ireland (Belclare, Charollais, Suffolk, Texel, and Vendeen). The mean observed and expected heterozygosity for all the sheep breeds were 0.
View Article and Find Full Text PDFBiochem Genet
January 2025
Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
Colorectal cancer (CRC) is the third most deadly cancer diagnosed in both men and women. 5-Fluorouracil (5-FU) treatment frequently causes the CRC cells to become chemoresistance, which has a negative impact on prognosis. Using bioinformatic techniques, this work describes important genes and biological pathways linked to 5-FU resistance in CRC cells.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
July 2024
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
Cellular plasticity, the remarkable adaptability of cancer cells to survive under various stress conditions, is a fundamental hallmark that significantly contributes to treatment resistance, tumor metastasis, and disease recurrence. Oncogenes, the driver genes that promote uncontrolled cell proliferation, have long been recognized as key drivers of cellular transformation and tumorigenesis. Paradoxically, accumulating evidence demonstrates that targeting certain oncogenes to inhibit tumor cell proliferation can unexpectedly induce processes like epithelial-to-mesenchymal transition (EMT), conferring enhanced invasive and metastatic capabilities.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
September 2024
School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
Sorghum, the fifth most important crop globally, thrives in challenging environments such as arid, saline-alkaline, and infertile regions. This remarkable crop, one of the earliest crops domesticated by humans, offers high biomass and stress-specific properties that render it suitable for a variety of uses including food, feed, bioenergy, and biomaterials. What's truly exciting is the extensive phenotypic variation in sorghum, particularly in traits related to growth, development, and stress resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!