Single-molecule fluorescence spectroscopy can reveal mechanistic and kinetic details that may not be observed in static structural and bulk biochemical studies of protein synthesis. One approach requires site-specific and stable attachment of fluorophores to the components of translation machinery. Fluorescent tagging of the ribosome is a prerequisite for the observation of dynamic changes in ribosomal conformation during translation using fluorescence methods. Modifications of the ribosomal particle are difficult due to its complexity and high degree of sequence and structural conservation. We have developed a general method to label specifically the prokaryotic ribosome by hybridization of fluorescent oligonucleotides to mutated ribosomal RNA. Functional, modified ribosomes can be purified as a homogenous population, and fluorescence can be monitored from labeled ribosomal complexes immobilized on a derivatized quartz surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC546139PMC
http://dx.doi.org/10.1093/nar/gki151DOI Listing

Publication Analysis

Top Keywords

site-specific labeling
4
labeling ribosome
4
ribosome single-molecule
4
single-molecule spectroscopy
4
spectroscopy single-molecule
4
single-molecule fluorescence
4
fluorescence spectroscopy
4
spectroscopy reveal
4
reveal mechanistic
4
mechanistic kinetic
4

Similar Publications

Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.

View Article and Find Full Text PDF

Purpose: Recent clinical advances with the approval of antibody-drug conjugates targeting Trop-2 such as sacituzumab-govitecan and datopotomab-deruxtecan have garnered tremendous interest for their therapeutic efficacy in numerous tumor types including breast and lung cancers. ImmunoPET can stratify tumor avidity, clarifying patient eligibility for ADC therapy as well as a diagnostic companion during therapy. Slow antibody circulation requires days to reach optimal imaging timepoints.

View Article and Find Full Text PDF

Peripheral arterial chemoreceptors monitor the levels of arterial blood gases and adjust ventilation and perfusion to meet metabolic demands. These chemoreceptors are present in all vertebrates studied to date but have not been described fully in reptiles other than turtles. The goals of this study were to 1) identify functional chemosensory areas in the South American rattlesnake (Crotalus durissus) 2) determine the neurochemical content of putative chemosensory cells in these areas and 3) determine the role each area plays in ventilatory and cardiovascular control.

View Article and Find Full Text PDF

Introduction: The brainstem vestibular nuclei neurons receive synaptic inputs from inner ear acceleration-sensing hair cells, cerebellar output neurons, and ascending signals from spinal proprioceptive-related neurons. The lateral (LVST) and medial (MVST) vestibulospinal (VS) tracts convey their coded signals to the spinal circuits to rapidly counter externally imposed perturbations to facilitate stability and provide a framework for self-generated head movements.

Methods: The present study describes the morphological characteristics of intraaxonally recorded and labeled VS neurons monosynaptically connected to the 8th nerve.

View Article and Find Full Text PDF

Site-Specific Competitive Kinase Inhibitor Target Profiling Using Phosphonate Affinity Tags.

Mol Cell Proteomics

January 2025

Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands. Electronic address:

Protein kinases are prime targets for drug development due to their involvement in various cancers. However, selective inhibition of kinases, while avoiding off-target effects remains a significant challenge for the development of protein kinase inhibitors. Activity-based protein profiling (ABPP), in combination with pan-kinase activity-based probes (ABPs) and mass spectrometry-based proteomics, enables the identification of kinase drug targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!