A major cue for the localization of sound in space is the interaural time difference (ITD). We examined the role of inhibition in the shaping of ITD responses in the inferior colliculus (IC) by iontophoretically ejecting gamma-aminobutyric acid (GABA) antagonists and GABA itself using a multibarrel pipette. The GABA antagonists block inhibition, whereas the applied GABA provides a constant level of inhibition. The effects on ITD responses were evaluated before, during and after the application of the drugs. If GABA-mediated inhibition is involved in shaping ITD tuning in IC neurons, then applying additional amounts of this inhibitory transmitter should alter ITD tuning. Indeed, for almost all neurons tested, applying GABA reduced the firing rate and consequently sharpened ITD tuning. Conversely, blocking GABA-mediated inhibition increased the activity of IC neurons, often reduced the signal-to-noise ratio and often broadened ITD tuning. Blocking GABA could also alter the shape of the ITD function and shift its peak suggesting that the role of inhibition is multifaceted. These effects indicate that GABAergic inhibition at the level of the IC is important for ITD coding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00956.2004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!