Motivation: Transcription start site selection and alternative splicing greatly contribute to diversifying gene expression. Recent studies have revealed the existence of alternative first exons, but most have involved mammalian genes, and as yet the regulation of usage of alternative first exons has not been clarified, especially in plants.
Results: We systematically identified putative alternative first exon transcripts in rice, verified the candidates using RT-PCR, and searched for the promoter elements that might regulate the alternative first exons. As a result, we detected a number of unreported alternative first exons, some of which are regulated in a tissue-specific manner.
Supplementary Information: http://www.bioinfo.sfc.keio.ac.jp/research/intron.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/bti253 | DOI Listing |
EMBO J
January 2025
Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK.
The cellular concentrations of splicing factors (SFs) are critical for controlling alternative splicing. Most serine and arginine-enriched (SR) protein SFs regulate their own concentration via a homeostatic feedback mechanism that involves regulation of inclusion of non-coding 'poison exons' (PEs) that target transcripts for nonsense-mediated decay. The importance of SR protein PE splicing during animal development is largely unknown despite PE ultra-conservation across animal genomes.
View Article and Find Full Text PDFTransfusion
December 2024
School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK.
Background: The Rh blood group system (ISBT004) is encoded by two homologous genes, RHD and RHCE. Polymorphism in these two genes gives rise to 56 antigens, which are highly immunogenic and clinically significant. This study extended previous work on the establishment of RHD allele specific reference sequences using next generation sequencing (NGS) with the Ion Personal Genome Machine (Ion PGM) to sequence the complete RHCE gene.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland. Electronic address:
RNA-protein interactions orchestrate hundreds of pathways in homeostatic and stressed cells. We applied an RNA-protein interactome capture method called protein cross-linked RNA extraction (XRNAX) to shed light on the RNA-bound proteome in dysmyelination. We found sets of canonical RNA-binding proteins (RBPs) regulating alternative splicing and engaged in the cytoplasmic granules to be perturbed at the level of their RNA interactome.
View Article and Find Full Text PDFOncogene
December 2024
Department of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
Breast cancer stem cells (BCSCs) are a rare cell population that is responsible for tumour initiation, metastasis and chemoresistance. Despite this, the mechanism by which BCSCs withstand genotoxic stress is largely unknown. Here, we uncover a pivotal role for the arginine methyltransferase PRMT5 in mediating BCSC chemoresistance by modulating DNA repair efficiency.
View Article and Find Full Text PDFCells
December 2024
Institute of Biochemistry II, Jena University Hospital, Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany.
There is no doubt that the proper development of the heart is important for its correct function, in addition, maturation processes of the heart are crucial as well. The actin-binding protein nexilin seems to take over central roles in the latter processes, as nexilin-deficient mice are phenotypically inconspicuous at birth but die within short time thereafter. Recently, it has been proposed that nexilin plays a role in the formation and function of transverse tubules (T-tubules), which are essential for excitation-contraction coupling in the hearts of mature animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!