Download full-text PDF

Source

Publication Analysis

Top Keywords

[state vascular-tissue
4
vascular-tissue permeability
4
permeability histamine
4
histamine content
4
content blood
4
blood vibration
4
vibration disease]
4
[state
1
permeability
1
histamine
1

Similar Publications

Unlabelled: is the causal agent of stem rot of many crops, a highly destructive disease of groundnut ( L). Based on evidence that many groundnut genotypes have an inherent ability to tolerate the pathogenicity of species, twenty-two genotypes of groundnut were screened against infection in sick plot field experiment; four genotypes, namely CS19, GG16, GG20 and TG37A, were selected as being the most tolerant, moderately tolerant, susceptible and highly susceptible to stem rot, respectively. Stem tissues (1cm from the collar region) from infected and healthy plants of four selected genotypes differing in susceptibility were examined using a scanning electron microscope (SEM).

View Article and Find Full Text PDF

A coaxial 3D bioprinted hybrid vascular scaffold based on decellularized extracellular matrix/nano clay/sodium alginate bioink.

Int J Biol Macromol

December 2024

Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China. Electronic address:

Currently, vascular grafting is the preferred option to replace or bypass the defective vascular segments, but finding materials with good biocompatibility and diversity alternative for practical clinical applications are still the challenge. The construction of tissue engineered blood vessels (TEBVs) with complex structures will be realized using 3D bioprinting technology, which provides a new idea for vascular transplantation. In this paper, the decellularized extracellular matrix (dECM)/nano clay (NC)/sodium alginate (SA) hybrid bioink was prepared to construct tubular scaffolds in vitro by coaxial 3D bioprinting.

View Article and Find Full Text PDF

Nitrogen (N) remobilization from mature leaves to new shoots (NSs) is closely related to the quality of green tea in the spring season, which subsequently determines its economic value. However, the underlying N remobilization mechanism remains poorly understood. Here, we demonstrate that >80% of the recovered 15N was partitioned in the first mature leaves that supply NSs.

View Article and Find Full Text PDF

Modified atmosphere packaging maintains stem quality of Chinese flowering cabbage by restraining postharvest lignification and ROS accumulation.

Food Chem X

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.

In this study, the impact of modified atmosphere packaging (MAP) on quality, lignin biosynthesis, reactive oxygen species (ROS) metabolism, and microstructures of stem in Chinese flowering cabbages was investigated. Compared with control, MAP treatment retained higher content of protein, total soluble solid, and vitamin C, while lower weight loss rate, carbon dioxide (CO) production rate, electrolyte leakage, firmness and hollowing of stems. Lignin content in MAP-treated stems was 1.

View Article and Find Full Text PDF

Construction of bFGF/heparin and FeO nanoparticles functionalized scaffolds aiming at vascular repair and magnetic resonance imaging monitoring.

Int J Biol Macromol

January 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China. Electronic address:

This work develops a bioactive basic fibroblast growth factor (bFGF)/heparin and FeO nanoparticles (NPs) trifunctionalized degradable construct with the potential of using as a vascular tissue engineering scaffold with the aim of improving vascular repair and regeneration therapy. The covalent modification of heparin onto the poly(lactic acid) (PLA)-gelatin (Gel)-FeO (PGF) scaffold improves the hydrophilicity of the scaffold. Furthermore, the electrostatic adsorption of bFGF on heparin allows for a more consistent and prolonged release of bFGF in situ, hence increasing the stability and effectiveness of bFGF around the surrounding vascular tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!