Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.200462076 | DOI Listing |
Acc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China.
A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:
Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Department of Life Science and Technology: Tokyo Kogyo Daigaku Seimei Rikogakuin Seimei Rikogakukei, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midzeori-Ku, Yokohama, 226-8501, Japan.
Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from Geotrichum candidum NBRC 4597 (G.
View Article and Find Full Text PDFJACS Au
November 2024
Department of Organic Chemistry, Indian Institute of Science, Bangalore560012, India.
Compared to the widely explored enol silanes, the applicability of their extended variants especially as bisvinylogous nucleophiles in enantioselective catalysis has been sparse. Herein, we describe the first enantioselective vinylogous and bisvinylogous allenylic substitution using silyl dienol and trienol ethers, respectively, as a nucleophile. With racemic allenylic alcohols as the electrophile, these enantioconvergent reactions are cooperatively catalyzed by an Ir(I)/(phosphoramidite,olefin) complex and Lewis acidic La(OTf) and display remarkable regio- and diastereoselectivity in most cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!