Two inhibitors, aviglycine and propargylglycine, were tested for their ability to suppress methionine synthesis thus inhibit conidial germination and mycelial growth of Czapek-Dox liquid medium grown Fusarium oxysporum f. sp. luffaemuM. The linear inhibition range for mycelial growth was about 7.6-762.9 microM. Although aviglycine did not completely inhibit both conidial germination and mycelial growth, it showed significant inhibitory effect at 1.5 microM. The inhibition range for propargylglycine against conidial germination and mycelial growth were from 0.08 to 8841 microM and from 0.8 to 884.1 microM, respectively. Propargylglycine inhibited conidial germination and mycelial growth at a concentration of 8841 muM. The EC(50) values of aviglycine were 1 microM for conidial growth and 122 microM for mycelial growth, and the EC(50) values of propargylglycine were 47.7 microM for conidial growth and 55.6 muM for mycelial growth. Supplement of methionine released inhibition of aviglycine or propargylglycine to conidial germination. In addition, a mixture of aviglycine (1.5 microM) and propargylglycine (8841 microM) showed additive inhibitive effect than applied alone on 10 isolates. From these results, both aviglycine and propargylglycine exhibited inhibitory activity, and suggest that they can provide potential tools to design novel fungicide against fungal pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11046-004-2225-6DOI Listing

Publication Analysis

Top Keywords

mycelial growth
32
conidial germination
24
germination mycelial
20
aviglycine propargylglycine
16
inhibit conidial
12
8841 microm
12
growth
10
microm
9
conidial
8
mycelial
8

Similar Publications

Arbuscular Mycorrhizal Fungi: Boosting Crop Resilience to Environmental Stresses.

Microorganisms

November 2024

State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

Amid escalating challenges from global climate change and increasing environmental degradation, agricultural systems worldwide face a multitude of abiotic stresses, including drought, salinity, elevated temperatures, heavy metal pollution, and flooding. These factors critically impair crop productivity and yield. Simultaneously, biotic pressures such as pathogen invasions intensify the vulnerability of agricultural outputs.

View Article and Find Full Text PDF

Biological Characteristics and Fungicide Screening of Causing Mulberry Anthracnose.

Microorganisms

November 2024

Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Mulberry is an important economic crop in China that is widely planted and has important edible and medicinal value. Anthracnose, a critical leaf disease, severely compromises the yield and quality of mulberry trees. However, there are many kinds of pathogens causing mulberry anthracnose and it is difficult to control.

View Article and Find Full Text PDF

Tan spot caused by is a severe threat to wheat production in all major wheat-growing regions. Sustainable tan spot control can be achieved by an integrated approach, including responsible management of fungicide sprays. The data about the sensitivity of to various fungicides in the Baltic Sea region are rare.

View Article and Find Full Text PDF

Late blight, caused by , is a devastating disease of potato. Our previous work illustrated that scopolamine, the main bioactive substance of extract, exerts direct inhibitory effects on , but it is unclear whether scopolamine and extract can boost resistance to late blight in potato. In this study, .

View Article and Find Full Text PDF

: Sweetpotato black rot, caused by , is a severe fungal disease in sweetpotato production. Biological control strategies represent a promising, environmentally sustainable approach to managing this disease. This study investigates the biocontrol potential of SFB-1 against .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!