Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We previously demonstrated that low K intake stimulated the expression of c-Src and that stimulation of protein tyrosine kinase inhibited ROMK channel activity (Wei, Y., Bloom, P., Lin, D. H., Gu, R. M., and Wang, W. H. (2001) Am. J. Physiol. 281, F206-F212). Decreases in dietary K content significantly increased O(2)(-) levels and the phosphorylation of c-Jun, a transcription factor, in renal cortex and outer medulla. The role of O(2)(-) and related products such as H(2)O(2) in stimulating the expression of protein tyrosine kinase is suggested by the observation that addition of 50-200 microm H(2)O(2) increased the phosphorylation of c-Jun and the expression of c-Src in M1 cells, a mouse collecting duct principal cell line. The effect of H(2)O(2) on c-Src expression was completely abolished with cyclohexamide or actinomycin D. The treatment of animals on a K-deficient (KD) diet with tempol for 7 days significantly decreased the production of O(2)(-), c-Jun phosphorylation, and c-Src expression. Moreover, low K intake decreased the activity of ROMK-like small conductance channels from 1.37 (control K diet) to 0.5 in the cortical collecting duct and increased the tyrosine phosphorylation of ROMK in the renal cortex and outer medulla. In contrast, the tempol treatment not only increased channel activity to 1.1 in the cortical collecting duct but also decreased the tyrosine phosphorylation of ROMK from rats on a KD diet. Finally, suppressing O(2)(-) production with tempol significantly increased renal K excretion measured with metabolic cage and lowered the plasma K concentration in comparison with those on a KD diet alone without tempol. We conclude that O(2)(-) and related products play a role in mediating the effect of low K intake on c-Src expression and in suppressing ROMK channel activity and renal K secretion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825056 | PMC |
http://dx.doi.org/10.1074/jbc.M414610200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!