We investigated the effect of individual phospholipids contained in pulmonary surfactant (PS) on the macrophage-activating factor (MAF)-induced priming of rabbit alveolar macrophages (AMs) for oxidative responses elicited by phorbol myristate acetate (PMA) or opsonized zymosan (Op-Zym). AMs were incubated with MAF with or without phospholipids for 18 h. After incubation, oxidative responses were elicited with PMA (0.5 micrograms/ml) or Op-Zym (250 micrograms/ml) and monitored by chemiluminescence (CL) assays. The data indicate that natural surfactant inhibited MAF-induced priming of rabbit AMs for PMA- or Op-Zym-elicited oxidative responses. Artificial surfactant inhibited PMA-elicited CL responses but enhanced Op-Zym-elicited CL responses. Individual phospholipids differed in modulative activities. Dioleoyl phosphatidylcholine (DOPC), dipalmitoyl phosphatidylglycerol (DPPG), and phosphatidylinositol (PI) inhibited MAF-induced priming when the oxidative responses were elicited with PMA. Whereas DPPG inhibited Op-Zym-elicited oxidative responses, dipalmitoyl phosphatidylcholine (DPPC) and DOPC primed AMs for increased Op-Zym-elicited oxidative responses. DOPC did not affect the binding of phorbol dibutyrate to AMs, which suggests that reduced cell binding of phorbol ester was not responsible for the inhibition of PMA-elicited oxidative responses in AMs treated with DOPC. Similarly, DPPC, DOPC, and DPPG did not affect the number of zymosan particles phagocytosed by AMs compared to the control, which suggested that enhanced or reduced Op-Zym-elicited oxidative responses by phospholipids were not due to altered phagocytic activity of AMs. In conclusion, our data indicate that individual surfactant phospholipid differently modulates priming of AMs for oxidative responses, and the effect of individual phospholipids does not account for the effect of complete PS on priming of AMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jlb.51.4.379 | DOI Listing |
Natl Sci Rev
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Kempegowda Institute of Medical Sciences, Bangalore, IND.
Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.
View Article and Find Full Text PDFEXCLI J
November 2024
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.
View Article and Find Full Text PDFGlaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions.
View Article and Find Full Text PDFDiabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!