Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.791DOI Listing

Publication Analysis

Top Keywords

proton-bound dimer
4
dimer acetone
4
proton-bound
1
acetone
1

Similar Publications

Article Synopsis
  • - The study measures rate coefficients for reactions involving hydrated protons and various sample vapors to produce protonated monomers and dimers using ion mobility spectrometry with a tandem drift tube.
  • - The method involves analyzing ions through two drift regions, adjusting for drift times, and fitting curves to derive accurate rate coefficients for specific compounds like triethyl phosphate and phenylacetate.
  • - The proposed technique shows a relative error of 10% and is applicable to a range of substances, indicating it can reliably determine rate coefficients for reactions that form these types of protonated species.
View Article and Find Full Text PDF

The incorporation of fluorine into amino acids is an important strategy to produce tailored building blocks with unique properties for peptide-based materials. Phenylalanine is frequently modified due to its role in cation-π interactions and the formation of amyloid fibres. Previous studies have utilized gas-phase vibrational spectroscopy to study interactions between canonical amino acids.

View Article and Find Full Text PDF

Time-Resolved Ion Mobility Spectrometry with a Stop Flow Confined Volume Reaction Region.

Anal Chem

June 2024

VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland.

An ion source concept is described where the sample flow is stopped in a confined volume of an ion mobility spectrometer creating time-dependent patterns of ion patterns of signal intensities for ions from mixtures of volatile organic compounds and improved signal-to-noise rate compared to conventional unidirectional drift gas flow. Hydrated protons from a corona discharge were introduced continuously into the confined volume with the sample in air at ambient pressure, and product ions were extracted continuously using an electric field for subsequent mobility analysis. Ion signal intensities for protonated monomers and proton bound dimers were measured and computationally extracted using mobilities from mobility spectra and exhibited distinct times of appearance over 30 s or more after sample injection.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding proton-bound complexes is important for grasping chemical reactivity and molecular interactions.
  • This study focuses on the complex formed between dihydrogen phosphate and formate, using IR action spectroscopy in helium droplets.
  • Findings reveal that contrary to expectations, protons are primarily located in the phosphate, and dynamics in partially deuterated complexes lead to changes in structure when IR light is applied.
View Article and Find Full Text PDF

The structure of the proton-bound dimer compound of hydrogen sulfate and formate has been studied by considering nuclear quantum effects (NQEs) using the path integral molecular dynamics method. This study unveiled the location of the shared proton and answered the following question: "Is the shared proton localized on either an anion or located around the center of two anions?" We have elucidated that the shared proton is distributed in the region beyond the transition state due to the NQEs, even though the shared proton did not completely overcome the transition state for the proton shuttle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!