The ubiquitin-targeting pathway is evolutionarily conserved and critical for many cellular functions. Recently, we discovered a role for two ubiquitin-protein ligases (E3s), Rsp5p and the Apc5p subunit of the anaphase-promoting complex (APC), in mitotic chromatin assembly in Saccharomyces cerevisiae. In the present study, we investigated whether Rsp5p and Apc5p interact in an intracellular pathway regulating chromatin remodeling. Our genetic studies strongly suggest that Rsp5p and Apc5p do interact and that Rsp5p acts upstream of Apc5p. Since E3 enzymes typically require the action of a ubiquitin-conjugating enzyme (E2), we screened E2 mutants for chromatin assembly defects, which resulted in the identification of Cdc34p and Ubc7p. Cdc34p is the E2 component of the SCF (Skp1p/Cdc53p/F-box protein). Therefore, we analyzed additional SCF mutants for chromatin assembly defects. Defective chromatin assembly extracts generated from strains harboring a mutation in the Cdc53p SCF subunit or a nondegradable SCF target, Sic1(Deltaphos), confirmed that the SCF was involved in mitotic chromatin assembly. Furthermore, we demonstrated that Ubc7p physically and genetically interacts with Rsp5p, suggesting that Ubc7p acts as an E2 for Rsp5p. However, rsp5CA and Deltaubc7 mutations had opposite genetic effects on apc5CA and cdc34-2 phenotypes. Therefore, the antagonistic interplay between Deltaubc7 and rsp5CA, with respect to cdc34-2 and apc5CA, indicates that the outcome of Rsp5p's interaction with Cdc34p and Apc5p may depend on the E2 interacting with Rsp5p.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC544157PMC
http://dx.doi.org/10.1128/EC.4.1.134-146.2005DOI Listing

Publication Analysis

Top Keywords

chromatin assembly
20
rsp5p apc5p
12
rsp5p
8
saccharomyces cerevisiae
8
mitotic chromatin
8
apc5p interact
8
mutants chromatin
8
assembly defects
8
apc5p
6
chromatin
6

Similar Publications

Identification of assembly mode of non-canonical BAF (ncBAF) chromatin remodeling complex core module.

Biochem Biophys Res Commun

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. Electronic address:

Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes play critical roles in regulating gene expression and DNA accessibility, and more than 20 % of cancers have mutations in genes encoding chromatin remodeling complexes. The mSWI/SNF family comprises three distinct classes: canonical BAF (cBAF), PBAF, and non-canonical BAF (ncBAF). While the structures of cBAF and PBAF have been resolved by using cryo-electron microscopy (cryo-EM), the modular organization and assembly mechanism of ncBAF remain poorly understood.

View Article and Find Full Text PDF

Identification of modulators of the ALT pathway through a native FISH-based optical screen.

Cell Rep

December 2024

Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.

View Article and Find Full Text PDF

In eukaryotes, accurate chromosome segregation during cell division relies on the centromeric histone H3 variant, CENH3. Our previous work identified KINETOCHORE NULL2 (αKNL2) as a plant CENH3 assembly factor, which contains a centromere-targeting motif, CENPC-k, analogous to the CENPC motif found in CENP-C. We also demonstrated that αKNL2 can bind DNA in vitro in a sequence-independent manner, without the involvement of its CENPC-k motif.

View Article and Find Full Text PDF

Mechanisms of Inheritance of Chromatin States: From Yeast to Human.

Annu Rev Biophys

December 2024

Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA; email:

In this article I review mechanisms that underpin epigenetic inheritance of CpG methylation and histone H3 lysine 9 methylation (H3K9me) in chromatin in fungi and mammals. CpG methylation can be faithfully inherited epigenetically at some sites for a lifetime in vertebrates and, remarkably, can be propagated for millions of years in some fungal lineages. Transmission of methylation patterns requires maintenance-type DNA methyltransferases (DNMTs) that recognize hemimethylated CpG DNA produced by replication.

View Article and Find Full Text PDF

COVID-19 is characterized by systemic pro-inflammatory shifts with the development of serious alterations in the functioning of the immune system. Investigations of the gene expression changes accompanying the infection state provide insight into the molecular and cellular processes depending on the sickness severity and virus variants. Severe Delta COVID-19 has been characterized by the appearance of a monocyte subset enriched for proinflammatory gene expression signatures and a shift in ligand-receptor interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!