We studied intron loss in 684 groups of orthologous genes from seven fully sequenced eukaryotic genomes. We found that introns closer to the 3' ends of genes are preferentially lost, as predicted if introns are lost through gene conversion with a reverse transcriptase product of a spliced mRNA. Adjacent introns tend to be lost in concert, as expected if such events span multiple intron positions. Directly contrary to the expectations of some, introns that do not interrupt codons (phase zero) are more, not less, likely to be lost, an intriguing and previously unappreciated result. Adjacent introns with matching phases are not more likely to be retained, as would be expected if they enjoyed a relative selective advantage. The findings of 3' and phase zero intron loss biases are in direct contradiction to an extremely recent study of fungi intron evolution. All patterns are less pronounced in the lineage leading to Caenorhabditis elegans, suggesting that the process of intron loss may be qualitatively different in nematodes. Our results support a reverse transcriptase-mediated model of intron loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC545554 | PMC |
http://dx.doi.org/10.1073/pnas.0408274102 | DOI Listing |
PLoS One
December 2024
Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, China.
Objective: To verify the accuracy of collagen-specific SNP mutation loci of Kele pigs selected by whole genome resequencing, and to excavate collagen-related genes of Kele pigs, so as to lay a foundation for further molecular selection.
Methods: Based on whole genome resequencing, candidate genes related to collagen trait of Kele pig were screened for gene annotation. Through KEGG and GO enrichment analysis of differential genes, we selected four genes that may affect collagen trait of collagen pig, namely COL9A1, COL6A5, COL4A3 and COL4A4.
Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
December 2024
Department of Otorhinolaryngology, the Affiliated Children Hospital of Zhengzhou University, Zhengzhou450052, China.
To investigate the pathogenic variants and function of a pedigree with syndromic hearing loss using high-throughput sequencing. Detailed medical history and pedigree history were inquired, and a pedigree chart was drawn. Hearing examinations were performed on this pedigree, and whole-exome sequencing and bioinformatics analysis were performed to screen for suspected pathogenic variants.
View Article and Find Full Text PDFClin Genet
December 2024
IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
Hereditary spastic paraplegias (HSP) are a diverse group of neurodegenerative diseases characterized by lower limb spasticity and weakness. To date, over 80 genes have been associated with HSP, but many families remain without a molecular diagnosis. In this study, linkage analysis and whole-exome sequencing (WES) were performed to identify the causal gene in a HSP family with autosomal recessive inheritance.
View Article and Find Full Text PDFJ Mol Evol
December 2024
Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3Er Circuito de Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
Heat stress affects various components of photosynthetic machinery of which Rubisco activation inhibition due to heat sensitive Rubisco activase (RCA) is the most prominent. Detailed comparison of RCA coding genes identified a tandem duplication event in the grass family lineage where the duplicated genes showed very different evolutionary pattern. One of the two genes showed high level of sequence conservation whereas the second copy, although present only 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!