Voltage-gated sodium channels are important membrane proteins underlying electrical signaling in the nervous and muscular systems. They undergo rapid conformational changes between closed resting, activated, and inactivated states. Approximately 30% of the mass of the sodium channel is carbohydrate, present as glycoconjugate chains, mostly composed of N-acetylhexosamines and sialic acid. In this study, the effects of removing the carbohydrate on the functional and structural properties of highly purified sodium channels from Electrophorus electricus were investigated. After enzymatic deglycosylation, channels were reconstituted into planar lipid bilayers. In the presence of batrachotoxin, substates became evident and the single-channel conductance of the deglycosylated channels was slightly reduced relative to that of native channels, consistent with electrostatic effects due to the reduction in negative charge at the extracellular vestibule of the channel. The previously reported state-dependent changes in the circular dichroism spectra that are associated with the binding of the anticonvulsant drug Lamotrigine and batrachotoxin are also seen in the modified channels. Synchrotron radiation circular dichroism (SRCD) spectroscopy on the type of sugars found in the sodium channel showed that unlike most carbohydrates, these sugars produce a significant dichroic signal in the far-ultraviolet region. This can account for all of the measured SRCD-detected spectral differences between the native and deglycosylated channels, thereby indicating that no net change in protein secondary structure results from the deglycosylation procedure. Furthermore, thermal denaturation studies detected no significant differences in stability between native and deglycosylated channels. In summary, while the sugars of the voltage-gated sodium channels from electroplax are not essential for functional or structural integrity, they do appear to have a modulating effect on the conductance properties of these channels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi048741qDOI Listing

Publication Analysis

Top Keywords

sodium channels
16
deglycosylated channels
12
channels
11
voltage-gated sodium
8
sodium channel
8
functional structural
8
circular dichroism
8
native deglycosylated
8
sodium
6
effects deglycosylation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!