Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo.

Neuroreport

Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain.

Published: October 2004

Several neurotransmitter systems are involved in the pathogenesis of Huntington's disease. Here, we examined the involvement of cannabinoid CB(1) receptors in striatal degeneration in the rat model of this disease generated by administration of 3-nitropropionic acid (3NP). Several days before onset of striatal degeneration, G-protein activation by cannabinoid agonists was significantly decreased whereas density and mRNA levels of CB(1) receptors remained essentially normal. This change was transient, CB(1) receptors recovering full functionality after few days. Later, at onset of striatal degeneration, profound alterations of CB(1) receptors were detected, including marked reductions of their density, mRNA levels and coupling to G proteins. In these rats, the administration of the cannabinoid agonist Delta(9)-tetrahydrocannabinol was neuroprotective, which indicates that the early loss of CB(1) receptor signaling could be instrumental in 3NP toxicity. In conclusion, the present study supports the hypothesis that cannabinoid receptors, possibly the CB(1) receptor subtype, may be involved in HD pathogenesis and could be an interesting therapeutic target to slow disease progression.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-200410250-00015DOI Listing

Publication Analysis

Top Keywords

cb1 receptors
16
striatal degeneration
12
involvement cannabinoid
8
cannabinoid receptors
8
3-nitropropionic acid
8
involved pathogenesis
8
days onset
8
onset striatal
8
density mrna
8
mrna levels
8

Similar Publications

The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.

View Article and Find Full Text PDF

Neuroprotective Actions of Cannabinoids in the Bovine Isolated Retina: Role of Hydrogen Sulfide.

Pharmaceuticals (Basel)

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.

Both hydrogen sulfide and endocannabinoids can protect the neural retina from toxic insults under in vitro and in vivo conditions. The aim of the present study was two-fold: (a) to examine the neuroprotective action of cannabinoids [methanandamide and 2-arachidonyl glycerol (2-AG)] against hydrogen peroxide (HO)-induced oxidative damage in the isolated bovine retina and (b) to evaluate the role of endogenously biosynthesized hydrogen sulfide (HS) in the inhibitory actions of cannabinoids on the oxidative stress in the bovine retina. Isolated neural retinas from cows were exposed to oxidative damage using HO (100 µM) for 10 min.

View Article and Find Full Text PDF

2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.

View Article and Find Full Text PDF

Semi-Synthesis of Dimeric Cannabidiol Derivatives and Evaluation of their Affinity at Neurological Targets.

J Nat Prod

January 2025

Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.

Cannabidiol (CBD) is a natural product associated with a wide range of biological and therapeutic activities. Despite the widespread cultural acceptance of CBD as a medicinal agent, much remains to be determined regarding its precise mechanism(s) of action in treating multiple conditions. CBD has been shown to promiscuously interact with several neurological targets with varying affinities.

View Article and Find Full Text PDF

Evidence indicates a bidirectional link between depressive symptoms and neuroinflammation. This study evaluated chronic cannabidiol (CBD) treatment effects in male and female rats subjected to the unpredictable chronic mild stress (UCMS) model of depression. We analyzed the gene expression related to neuroinflammation, cannabinoid signaling, estrogen receptors, and specific microRNAs in the ventromedial prefrontal cortex (vmPFC), CA1, and ventral subiculum (VS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!