The enzymic basis for intracellular reduction of N-hydroxylated amidines to their corresponding amidines, and hydroxylamines to their corresponding amines, is unknown. The hydroxylated amidines can be used as prodrug moieties, and an understanding of the enzyme system active in the reduction can contribute to more efficient drug development. In this study, we examined the properties of this enzyme system using benzamidoxime and N-hydroxymelagatran as substrates. In rats and humans, the hepatic enzyme system was localized in mitochondria as well as in microsomes, using preferably NADH as cofactor. Potassium cyanide, N-methylhydroxylamine, p-hydroxymercuribenzoate, and desferrioxamine were efficient inhibitors, whereas typical cytochrome P450 (P450) inhibitors were ineffective. In rats, the highest specific activity was found in liver, adipose tissue, and kidneys, whereas in humans, the specific activity in the preparations of adipose tissue examined was lower. A sex difference was observed in rat liver, where 4-fold higher activity was seen in microsomes from female rats. No gender differences were present in any other tissue investigated. Partial purification of the hepatic system was achieved using polyethylene glycol fractionation followed by Octyl Sepharose chromatography at low detergent concentrations, whereas the enzyme was denatured after complete solubilization. The unique appearance of the enzyme activity in adipose tissue, together with the cyanide sensitivity and the failure of typical P450 inhibitors to impede the reaction, indicates that the enzyme system active in reduction of benzamidoxime and N-hydroxymelagatran formation is not of cytochrome P450 origin, but likely consists of an NADH-dependent electron transfer chain with a cyanide-sensitive protein as the terminal component.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.104.002972DOI Listing

Publication Analysis

Top Keywords

enzyme system
16
active reduction
12
adipose tissue
12
partial purification
8
system active
8
benzamidoxime n-hydroxymelagatran
8
cytochrome p450
8
p450 inhibitors
8
specific activity
8
enzyme
7

Similar Publications

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

Purpose: Reports of gene therapy-associated retinal atrophies and inflammation have highlighted the importance of preclinical safety assessments of adeno-associated virus (AAV) vector systems. We evaluated in nonhuman primates (NHPs) the ocular safety and toxicology of a novel AAV gene therapy targeting retinitis pigmentosa caused by mutations in PDE6A, which has since been used in a phase I/II clinical trial (NCT04611503).

Methods: A total of 34 healthy cynomolgus animals (Macaca fascicularis) were treated with subretinal injections of rAAV.

View Article and Find Full Text PDF

Xuefu Zhuyu Decoction (XZD) is widely used in the treatment of cardiovascular diseases. The purpose of this study was to explore the pharmacological effects and molecular mechanisms of XZD in improving hyperlipidemia and to provide a theoretical framework for clinical application. In this study, the signaling pathways regulated by XZD in improving hyperlipidemia were predicted by network pharmacology.

View Article and Find Full Text PDF

Glycolysis is a conserved metabolic pathway that converts glucose into pyruvate in the cytosol, producing ATP and NADH. In and several other apicomplexan parasites, some glycolytic enzymes have isoforms located in their plastid (called the apicoplast). In this organelle, glycolytic intermediates like glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) are imported from the cytosol and further metabolized, providing ATP, reducing power, and precursors for anabolic pathways such as isoprenoid synthesis.

View Article and Find Full Text PDF

is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant . Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!