AI Article Synopsis

  • cDNA-AFLP is used to identify genes that are expressed differently in two wheat lines with varying resistance to salt (NaCl) from the same seed.
  • A total of cDNA fragments associated with salt tolerance were identified, including one called SIR73, which has a 32% similarity to human transcription factors.
  • Northern analysis shows that SIR73 is significantly induced by NaCl stress, with higher expression in the salt-resistant line (SR) compared to the salt-sensitive line (SS), suggesting its role in regulating gene expression during salt stress.

Article Abstract

cDNA-AFLP (amplified fragment length polymorphism) is used to isolate genes differentially expressed in two wheat lines with the different resistance to NaCl derived from a single seed. A lot of cDNA fragments related to salt tolerance are obtained. Of with the number 73 cDNA fragment encodes for a transcription factors with an 32% similarity to human transcription factors in the relative amino acid which is named SIR73. Northern analysis confirms that SIR73 is strongly induced by NaCl stress and the expression in SR is more strongly induced than in SS.SIR73 may be involved in the regulation of gene expression in salt stress in wheat.

Download full-text PDF

Source

Publication Analysis

Top Keywords

transcription factors
8
[isolation characterization
4
characterization sir73
4
sir73 gene
4
gene fragment
4
salt
4
fragment salt
4
salt resistant
4
resistant mutant
4
mutant wheat
4

Similar Publications

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

Post-transcriptional regulation of the transcriptional apparatus in neuronal development.

Front Mol Neurosci

December 2024

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.

Post-transcriptional mechanisms, such as alternative splicing and polyadenylation, are recognized as critical regulatory processes that increase transcriptomic and proteomic diversity. The advent of next-generation sequencing and whole-genome analyses has revealed that numerous transcription and epigenetic regulators, including transcription factors and histone-modifying enzymes, undergo alternative splicing, most notably in the nervous system. Given the complexity of regulatory processes in the brain, it is conceivable that many of these splice variants control different aspects of neuronal development.

View Article and Find Full Text PDF

Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.

View Article and Find Full Text PDF

The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!