DNA methylation markers provide a powerful tool to make diagnoses based on genetic material obtained directly from tumors or from "remote" locations such as sputum, pleural fluid, or serum. In particular when limited cell numbers are available, amplifyable DNA markers can provide a very sensitive tool for cancer detection and classification. Malignant mesothelioma (MM), an aggressive cancer strongly associated with asbestos exposure, can be difficult to distinguish from adenocarcinoma of the lung when limited material is available. In an attempt to identify molecular markers for MM and adenocarcinoma, we examined the DNA methylation status of 14 loci. Analysis of methylation levels in 10 MM and 8 adenocarcinoma cell lines showed that methylation of APC was significantly elevated in adenocarcinoma compared to MM cell lines (P=0.0003), while methylation of CDH1 was higher in MM (P<0.02). Subsequent examination of the methylation status of the 14 loci in 6 MM and 7 adenocarcinoma primary tumors, which yielded similar methylation profiles, supported these observations. Comparison of methylation in MM cell lines and tumors versus non-tumor lung tissue indicated that APC exhibits less methylation in MM (P=0.003) while RASSF1, PGR1, ESR1, and CDH1 show more methylation in MM, the latter two showing the most significant difference between the two tissue types (P< or = 0.0001). Comparison of methylation in adenocarcinoma cell lines and tumors versus non-tumor lung tissue showed methylation of ESR1, PGR1 and RASSF1 to be significantly elevated in adenocarcinoma, with RASSF1 being most significant (P=0.0002). Thus, with the examination of 14 loci, we have identified 5 candidates that show potential for distinguishing between MM, adenocarcinoma and/or non-cancer lung. Our observations support the strong potential of methylation markers as tools for accurate diagnosis of neoplasms in and around the lung.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lungcan.2004.08.003 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFNutrients
January 2025
Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.
View Article and Find Full Text PDFNutrients
January 2025
Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.
View Article and Find Full Text PDFMolecules
January 2025
School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.
View Article and Find Full Text PDFLife (Basel)
December 2024
School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
Serum cystatin C is a well-established marker of renal function and a valuable predictor of health risks and mortality. DNA methylation-predicted cystatin C (DNAmCystatinC), an advanced epigenetic biomarker, serves as a proxy for serum cystatin C levels. However, the relationships between serum cystatin C, DNAmCystatinC, renal function, and mortality outcomes have not been previously examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!