Kanamycin incorporation in lipid vesicles prepared by ethanol injection designed for tuberculosis treatment.

J Pharm Pharmacol

Department of Biotechnological Processes, Chemical Engineering School, State University of Campinas (UNICAMP), CP 6066, Campinas - SP, 13083-970, Brazil.

Published: January 2005

The primary goal of this study was the production of liposomes encapsulating kanamycin for drug administration by inhalation. The selected drug is indicated for multiresistant tuberculosis, and administration through inhalation allows both local delivery of the drug to the lungs and systemic therapy. The ethanol injection method used for the liposome production is easily scaled up and is characterized by simplicity and low cost. Vesicles were prepared using different lipid compositions, including hydrogenated soybean phosphatidylcholine and cholesterol (SPC/Chol), egg phosphatidylcholine and cholesterol (EPC/Chol), distearoyl phosphatidylcholine and cholesterol (DSPC/Chol), distearoyl phosphatidylcholine, dimyristoyl phosphatidylethanolamine and cholesterol (DSPC/DMPE/Chol), dipalmitoyl phosphatidylcholine and cholesterol (DPPC/Chol) and dipalmitoyl phosphatidylcholine, dipalmitoyl phosphatidylglycerol and cholesterol (DPPC/DPPG/Chol). The effects of different operational conditions for vesicle production and drug encapsulation were evaluated, aiming at a compromise between final process cost and suitable vesicle characteristics. The best performance concerning drug incorporation was achieved with the DSPC/Chol system, although its production cost was considerably larger than that of the natural lipids formulations. Encapsulation efficiencies up to 63% and final drug to lipid molar ratios up to 0.1 were obtained for SPC/Chol vesicles presenting mean diameters of 132 nm incubated at 60 degrees C with the drug for 60 min at an initial drug-to-lipid molar ratio of 0.16.

Download full-text PDF

Source
http://dx.doi.org/10.1211/0022357055092DOI Listing

Publication Analysis

Top Keywords

phosphatidylcholine cholesterol
16
vesicles prepared
8
ethanol injection
8
administration inhalation
8
distearoyl phosphatidylcholine
8
dipalmitoyl phosphatidylcholine
8
drug
7
phosphatidylcholine
6
cholesterol
6
kanamycin incorporation
4

Similar Publications

In the realm of gene therapy, given the exceptional performance of native exosomes, researchers have redirected their innovative focus towards exosome-mimetic nanovesicles (EMNs); however, the current design of most EMNs relies heavily on native cells or their components, inevitably introducing inter-batch variability issues and posing significant challenges for quality control. To overcome the excessive reliance on native cellular components, this study adopts a unique approach by precisely mimicking the lipid composition of exosomes and innovatively incorporating histone components to recapitulate the gene transfer characteristics of exosomes. We selected sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and cholesterol as the lipid components, and employed the double emulsion method to prepare biomimetic exosomes carrying histone A and PEDF-DNA plasmids (His-pDNA@EMNs).

View Article and Find Full Text PDF

Background: Hyperuricemia and non-alcoholic fatty pancreas disease (NAFPD) are prevalent metabolic diseases, but the relationship between them remains underexplored.

Methods: Eighteen Sprague-Dawley rats were randomly assigned to three groups: normal (CON), high-fat (PO), and high-fat high-uric acid (PH). After 12 weeks, serum uric acid (SUA) and triacylglycerol levels were measured.

View Article and Find Full Text PDF

α-Synuclein (αSyn), an intrinsically disordered protein implicated in Parkinson's disease, is potentially thought to initiate aggregation through binding to cellular membranes. Previous studies have suggested that anionic membrane charge is necessary for this binding. However, these studies largely focus on unmodified αSyn, while nearly all αSyn in the body is N-terminally acetylated (NTA).

View Article and Find Full Text PDF

This study aimed to assess the causal relationship between lipidome and female reproductive diseases (FRDs) using an advanced series of Mendelian randomization (MR) methods. This study utilized genome-wide association study (GWAS) summary statistics encompassing 179 lipidomes and six prevalent FRDs, namely polycystic ovary syndrome (PCOS), endometriosis, uterine fibroid, female infertility, uterine endometrial cancer, and ovarian cancer. The two-sample MR (TSMR) approach was employed to investigate the causal relationships, with further validation using false discovery rate (FDR) and multivariable MR (MVMR) methods.

View Article and Find Full Text PDF

Comparative lipidomic profiling in adolescents with obesity and adolescents with type 1 diabetes.

Curr Probl Cardiol

January 2025

Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.

Objective: Both adolescents with obesity and those with type 1 diabetes (T1D) exhibit alterations in lipid profiles, but direct comparisons are limited. Comparing lipidomic profiles between obese individuals and those with T1D is crucial for identifying specific metabolic markers, informing tailored interventions, and advancing precision medicine strategies for these distinct populations. The aim of the study was to compare lipidomic profiles between adolescents with obesity and those with T1D, and to analyze associations between metabolites and clinical parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!